Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-30T03:18:48.670Z Has data issue: false hasContentIssue false

Influence of atmosphere on crystallization of zirconia from a zirconium alkoxide

Published online by Cambridge University Press:  31 January 2011

David E. Collins
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Keith J. Bowman
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Get access

Abstract

Dibutoxybis (acetylacetonato) zirconium, a difunctional zirconium alkoxide, was polymerized at 130 °C for 5 h in vacuo to produce oligomers that could be pyrolyzed to form a tetragonal zirconia (t-ZrO2), metastable at room temperature. This metastable phase was retained considerably below the equilibrium transformation temperature (∼1200 °C) without the use of dopants. Comparative pyrolysis of the oligomers between 600 and 900 °C in either flowing O2 or N2 for processing times under 12 h indicated t-ZrO2 nucleated first. Pyrolysis in oxygen facilitated transformation to the monoclinic symmetry, whereas pyrolysis in nitrogen demonstrated retention of the tetragonal phase. The formation of oxygen vacancies during pyrolysis, their role in stabilizing the metastable tetragonal phase, and contributions of O2 and crystallite size in the polymorphic transformation are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Garvie, R., J. Phys. Chem. 69, 1238 (1965).CrossRefGoogle Scholar
2.Morgan, P., J. Am. Ceram. Soc. 67, C204 (1984).Google Scholar
3.Srinivasan, R., De Angelis, R., and Davis, B., J. Mater. Res. 1, 583 (1986).Google Scholar
4.Srinivasan, R., Rice, L., and Davies, B., J. Am. Ceram. Soc. 73, 3528 (1990).Google Scholar
5.Livage, J., Doi, K., and Mazières, C., J. Am. Ceram. Soc. 51, 349 (1968).CrossRefGoogle Scholar
6.Osendi, M., Moya, J., Serna, C., and Soria, J., J. Am. Ceram. Soc. 68, 135 (1985).CrossRefGoogle Scholar
7.Yogo, T., J. Mater. Sci. 25, 2394 (1990).Google Scholar
8.Papet, P., Gars, N. Le, Baumard, J., Lecomte, A., and Dauger, A., J. Mater. Sci. 24, 3850 (1989).Google Scholar
9.Hall, M., Veeraraghavan, V., Rubin, H., and Winchell, P., J. Appl. Crystallogr. 10, 66 (1977).CrossRefGoogle Scholar
10. H. Klug and Alexander, L., in X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley and Sons, New York, 1954).Google Scholar
11.Schmid, H., J. Am. Ceram. Soc. 70, 367376 (1987).Google Scholar
12.Toraya, H., Yoshimura, M., and Sōomiya, S., J. Am. Ceram. Soc. 67, C119 (1984).Google Scholar
13.Evans, P., Stevens, R., and Binner, J., Br. Ceram. Trans. J. 83, 3943 (1984).Google Scholar
14.Lynch, C., Mazdiyasni, K., Smith, J., and Crawford, W., Anal. Chem. 36, 2332 (1964).CrossRefGoogle Scholar
15.Barraclough, C., Bradley, D., Lewis, J., and Thomas, I., J. Chem. Soc., 2601 (1961).Google Scholar
16.Bradley, D., Mehrotra, R. C., Swanwick, J. D., and Wardlaw, W., J. Chem. Soc. 2025 (1953).Google Scholar
17.Mikami, M., Nakagawa, I., Shimanoughi, T., Spectrochim. Acta 22A, 1037 (1697).Google Scholar
18.Barraclough, C., Lewis, J., and Nyholm, R., J. Chem. Soc., 3552 (1959).Google Scholar
19.Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed. (John Wiley and Sons, New York, 1970).Google Scholar
20.Bradley, C. and Holloway, E. E., J. Chem. Soc. (A), 282 (1969).Google Scholar
21.Bradley, C. and Holloway, C. E., Chem. Commun., 284 (1965).Google Scholar
22.Clearfield, A., Rev. Pure Appl. Chem. 14, 91 (1964).Google Scholar
23.Clearfield, A. and Vaughan, P. A., Acta Crystallogr. 9, 555 (1956).Google Scholar
24.Fryer, J., Hutchison, J., and Paterson, R., J. Colloid Interface Sci. 34, 238 (1970).Google Scholar
25.Mamott, G., Barnes, P., Tarling, S., Jones, S., and Norman, C., J. Mater. Sci. 26, 4054 (1991).CrossRefGoogle Scholar
26.Rice, R, J. Am. Ceram. Soc. 74, 1745 (1991).Google Scholar
27.Soria, J. and Moya, J., J. Am. Ceram. Soc. 74 (7), 1747 (1991).Google Scholar
28.Lerch, M., J. Am. Ceram. Soc. 79 (10), 2641 (1996).Google Scholar
29.Winchell, P. and Speich, C. R., Acta Metall. 18, 53 (1970).CrossRefGoogle Scholar
30.Srinivasan, R., Davis, B., Cavin, O., and Hubbard, C., J. Am. Ceram. Soc. 75 (5), 1217 (1992).CrossRefGoogle Scholar
31.Srinivasan, R, Hubbard, C., Cavin, O., and Davis, B., Chem. Mater. 5, 27 (1993).CrossRefGoogle Scholar