Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T21:20:47.106Z Has data issue: false hasContentIssue false

The influence of monomer and polymer properties on the removal of organic vehicle from ceramic and metal moldings

Published online by Cambridge University Press:  03 March 2011

S.A. Matar
Affiliation:
Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UB8 3PH, England
J.R.G. Evans
Affiliation:
Department of Materials Technology, Brunei University, Uxbridge, Middlesex UB8 3PH, England
M.J. Edirisinghe
Affiliation:
Department of Materials Technology, Brunei University, Uxbridge, Middlesex UB8 3PH, England
E.H. Twizell
Affiliation:
Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UB8 3PH, England
Get access

Abstract

This paper describes the effects of monomer and polymer properties on the competition between degradation of organic vehicle and transport of degradation products in ceramic moldings during pyrolysis. An experimentally tested model is studied systematically for ranges of material and process parameters characteristic of known polymers and their degradation products. The work highlights the properties having the greatest influence on the successful removal of organic vehicle from molded ceramics. The polymer properties controlling the diffusion constant are linked to the temperature dependence of viscosity of the molten suspension. Enthalpy of vaporization of the organic vehicle and the activation energy for the diffusion coefficient have a commanding influence on the critical heating rate for avoidance of defects. Preliminary guidelines emerge for the design of polymers for plastic forming of ceramic suspensions.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Evans, J. R. G., Edirisinghe, M. J., Wright, J. K., and Crank, J., Proc. K R. Soc. London A432, 321 (1991).Google Scholar
2Matar, S. A., Edirisinghe, M. J., Evans, J. R. G., and Twizell, E. H., J. Mater. Res. 8, 617 (1993).CrossRefGoogle Scholar
3Matar, SA., Edirisinghe, M. J., Evans, J. R. G., and Twizell, E.H., J. Am. Ceram. Soc. (1995, in press).Google Scholar
4Edirisinghe, M. J. and Evans, J.R.G., Int. J. High Tech. Ceram. s 2, 1 (1986).CrossRefGoogle Scholar
5Plastics: Making the best choice (RAPRA Technology Ltd., Shrewsbury, UK, 1986), p. 2.Google Scholar
6Haward, R. N., J. Macromol. Sci. Rev., Macromol Chem. C4, 191 (1970).CrossRefGoogle Scholar
7Bondi, A. and Simkin, D. J., A.I.Ch.E. J. 6, 191 (1960).CrossRefGoogle Scholar
8van Krevelen, D.W., Properties of Polymers (Elsevier, Amsterdam, 1972).Google Scholar
9Duda, J. L., Vrentas, J. S., Ju, S. T., and Liu, H. T., A.I.Ch.E. J. 28, 279 (1982).CrossRefGoogle Scholar
10Ferry, J. D., Viscoelastic Properties of Polymers, 2nd ed. (John Wiley, New York, 1970), p. 316.Google Scholar
11Mark, H. F., Bikales, N. B., Overberger, C. G., and Menges, G., Encyclopedia of Polymer Science and Engineering (John Wiley, New York, 1989), Vol. 17, p. 5.Google Scholar
12Partington, J. R., An Advanced Treatise on Physical Chemistry (Longmans, London, 1968), Vol. 2, p. 53.Google Scholar
13Simha, R. and Boyer, R. F., J. Chem. Phys. 37, 1003 (1962).CrossRefGoogle Scholar
14Vrentas, J. S., Duda, J. L., Ling, H-C., and Hou, A-C., J. Poly. Sci. Phys. 23, 289 (1985).CrossRefGoogle Scholar
15Hewitt, D.M and Weale, K.E., J. Chem. Soc. 1541 (1948).Google Scholar
16Vrentas, J. S., Liu, H. T., and Duda, J. L., J. Appl. Poly. Sci. 25, 1297 (1980).CrossRefGoogle Scholar
17Young, R. J., Introduction to Polymers (Chapman and Hall, London, 1981), p. 104.CrossRefGoogle Scholar
18Barlow, A. J., Lamb, J., and Matheson, A. J., Proc. R. Soc. London A 292, 322 (1966).Google Scholar
19Barlow, A. J., Erginsor, A., and Lamb, J., Proc. R. Soc. London A 298, 481 (1967).Google Scholar
20Carpenter, M. R., Davies, D. B., and Matheson, A. J., J. Chem. Phys. 46, 2541 (1967).Google Scholar
21Utracki, L. A., J. Macromol. Sci. Phys. B10, 477 (1974).CrossRefGoogle Scholar
22Moynihan, C. T., Schnaus, V. E., and Czaplack, D., J. Phys. Chem. 82, 1087 (1978).CrossRefGoogle Scholar
23Cutnell, J. D., Schisla, R. M., and Hammann, W. C., J. Phys. Chem. 77, 1134 (1973).CrossRefGoogle Scholar
24Davies, D. B. and Matheson, A. J., J. Chem. Soc. Faraday Trans. 2 69, 305 (1973).CrossRefGoogle Scholar
25Laughlin, W. T. and Uhlmann, D. R., J. Phys. Chem. 76, 2317 (1972).CrossRefGoogle Scholar
26Cohen, M. H. and Grest, G. S., Phys. Rev. B 20, 1077 (1979).CrossRefGoogle Scholar
27Eicher, L. D. and Zwolinksi, B. J., J. Phys. Chem. 75, 2016 (1971).Google Scholar
28Loutfy, R. O. and Arnold, B. A., J. Phys. Chem. 86, 4205 (1982).CrossRefGoogle Scholar
29Herreman, W., Grevendank, W., and De Bock, A., J. Chem. Phys. 53, 185 (1970).CrossRefGoogle Scholar
30Marquardt, D. W., SIAM J. 11, 431 (1963).Google Scholar
31Mark, H. F., Othmer, D. F., Overberger, C. G., and Seaborg, G.T., Enclyclopaedia of Chemical Technology, 3rd ed. (1980), Vol. 11, p. 231.Google Scholar
32Marsden, C. and Mann, S., Solvents Guide (Cleaver Hume Press, London, 1963), p. 201.Google Scholar
33Jellinek, H. H. G., Degradation and Stabilization of Polymers (Elsevier, Amsterdam 1983), Vol. 1, pp. 24 and 41.Google Scholar
34Saito, K., Tanaka, T., and Hibino, T., U.K. Patent 1426317, February 25, 1976.Google Scholar
35Stedman, S. J., Evans, J. R.G., and Woodthorpe, J., Ceram. Int. 16, 107 (1990).CrossRefGoogle Scholar
36Johnsson, A., Carstrom, E., Hermansson, L., and Carlsson, R., Proc. Brit. Ceram. Soc. 33, 139 (1983).Google Scholar
37Shaw, H., Edirisinghe, M. J., and Holding, S., J. Mater. Sci. Lett. 12, 1227 (1993).CrossRefGoogle Scholar
38Ferry, J. D., Viscoelastic Properties of Polymers, 2nd ed. (John Wiley, New York, 1970), pp. 307320.Google Scholar
39Doolittle, A. K., J. Appl. Phys. 22, 1471 (1951).CrossRefGoogle Scholar
40Weir, F. E., S.P.E. Trans. Jan. 1963, pp. 3236.Google Scholar
41Edirisinghe, M. J. and J.R.G., J. Mater. Sci. 22, 269 (1987).CrossRefGoogle Scholar
42Edirisinghe, M. J. and Evans, J.R.G., Br. Ceram. Trans. J. 86, 18 (1987).Google Scholar
43Hunt, K. N., Evans, J. R. G., and Woodthorpe, J., J. Mater. Sci. 26, 2143 (1991).CrossRefGoogle Scholar
44Edirisinghe, M. J., Bull. Am. Ceram. Soc. 70, 824 (1991).Google Scholar
45Handbook of Chemistry and Physics, 55th ed., edited by Weast, R. C. (CRC Press, Cleveland, OH, 1974), pp. D162D166.Google Scholar