Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T06:27:09.052Z Has data issue: false hasContentIssue false

Influence of silver and excess copper on the formation and properties of 2223 (Bi, Pb)–Sr–Ca–Cu–O superconductor

Published online by Cambridge University Press:  08 February 2011

R.B. Tripathi*
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
D.W. Johnson Jr.
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
D.A. Fleming
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
*
a)Visiting scientist from National Physical Laboratory, New Delhi, India.
Get access

Abstract

The effect of silver additions and excess copper on the sinterability and weak link behavior has been studied in the nominal composition Bi1.72Pb0.32Sr2Ca2Cu3Ox (Ag = 1−4 wt. %) and Bi1.72Pb0.32Sr2Cu3+yOx where y = 0.2−0.5, using magnetic susceptibility, XRD, and SEM methods. Ag additions enhance the weak link behavior, giving a magnetic susceptibility shoulder at 103 K. This shoulder became more prominent at high fields (35 Oe), and a low Tc phase became evident with 4 wt. % Ag additions. In contrast to stoichiometric compositions, samples containing excess copper demonstrated an enhancement of the sinterability and a large volume of 2223 phase even in calcined samples. XRD data and SEM analysis failed to detect any Cu-rich phase up to copper contents y = 0.4. However, in copper samples with y = 0.5, a small x-ray peak at 2θ = 48.5°has been observed corresponding to CuO.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kung, J. H., Yen, H. H., Chen, Y. C., Wang, C-M., and Wu, P. T., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 785.Google Scholar
2Jin, S., Davis, M. E., Tiefel, T. H., Van Dover, R. B., Sherwood, R. C., O'Bryan, H. M., Kammlott, G. W., and Fastnacht, R. A., Appl. Phys. Lett. 54, 2609 (1989).Google Scholar
3Jin, S., Sherwood, R. C., Tiefel, T. H., Dover, R. B. Van, and Johnson, D. W., Jr., Appl. Phys. Lett. 51, 203 (1987).Google Scholar
4Tiefel, T. H., Jin, S., Sherwood, R. C., Davis, M. E., Kammlott, G. W., Gallagher, P. K., Johnson, D. W. Jr, Fastnacht, R. A., and Rhodes, W. W., Mater. Lett. 7, 363 (1989).Google Scholar
5Hikata, T., Nishikawa, T., Mukai, H., Sato, K. I., and Hitotsuyanagi, H., Jpn. J. Appl. Phys. 28, L1204 (1989).CrossRefGoogle Scholar
6Hoshino, K. and Takahara, H., Jpn. J. Appl. Phys. 28, L1214 (1989).CrossRefGoogle Scholar
7Miyatake, T., Yamaguchi, K., Takata, T., Gotoh, S., Koshizuka, N., and Tanaka, S., Physica C 160, 541 (1989).Google Scholar
8Tripathi, R. B. and Johnson, D. W., Jr., Mater. Lett. 10, 118 (1990).Google Scholar