Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T21:41:14.689Z Has data issue: false hasContentIssue false

Ion-induced conductivity in poly (phenylene sulfide)

Published online by Cambridge University Press:  31 January 2011

F. H. Ruddy
Affiliation:
Westinghouse Research and Development Center, 1310 Beulah Road, Pittsburgh, Pennsylvania 15235
J. Bartko
Affiliation:
Westinghouse Research and Development Center, 1310 Beulah Road, Pittsburgh, Pennsylvania 15235
K. F. Schoch Jr.
Affiliation:
Westinghouse Research and Development Center, 1310 Beulah Road, Pittsburgh, Pennsylvania 15235
Get access

Abstract

New data on the production of electrical conductivity in poly (phenylene sulfide), PPS, by ion irradiation are presented. These and previously reported PPS data are investigated in the framework of a theoretical semiempirical model that relates observed conductivity to parameters associated with the deposition of energy in the polymer by the bombarding ions. It is shown that the onset of conductivity with increasing ion dose is dependent on overlap of individual ion damage regions. A straight line relationship is obtained between log of the ion stopping power and log of the effective overlap radius of the ion damage regions. Furthermore, the magnitude of the values of effective overlap radii are consistent with physical observations and theoretical predictions. At higher ion doses, the rapid increase in conductivity appears to be consistent with a multistage reaction mechanism for the production of conducting species in the polymer. A universal curve of conductivity as a function of dose above threshold dose is seen to fit all of the PPS data up to a dose of a factor of 50 above threshold. This curve and the predictable behavior of the threshold dose allow the selection of ion/dose combinations to produce a desired conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Allen, W. N., Brant, P., Carosella, C. A., DeCorpo, J. J., Ewing, C. T., Sualfeld, F. E., and Weber, D. C., Synth. Met. 1, 151 (1979).CrossRefGoogle Scholar
2Hioki, T., Noda, S., Sugihara, M., Kakeno, M., Yamada, K., and Kauamoto, J., Appl. Phys. Lett. 43, 30 (1983).CrossRefGoogle Scholar
3Davenes, J., Xu, X. L., Maitrot, M., Gamoudi, M., Guilland, G., Andre, J. J., Francoise, B., and Mathis, C., J. Phys. C3, Suppl. No. 6 44, 183 (1983).Google Scholar
4Mazurek, H., Day, D. R., Maby, E. W., Abel, J. S., Senturia, S. D., Dresselhaus, M. S., and Dresselhaus, G., J. Poly. Sci. Phys. Ed. 2, 537 (1983).CrossRefGoogle Scholar
5Kaplan, M. L., Forrest, S. R., Schmidt, P. H., and Venkatesan, T., J. Appl. Phys. 55, 732 (1984).CrossRefGoogle Scholar
6Venkatesan, T., Dynes, R. C., Wilkens, B., White, A. E., Gibson, J. M., and Hamm, R., Nucl. Instrum. Meth. Phys. Res. B 1, 599 (1984).CrossRefGoogle Scholar
7Venkatesan, T., Levi, R., Banwell, T. C., Tombrello, T., Nicolet, M., Hamm, R., and Meixner, A. E., Mater. Res. Soc. Symp. Proc. 45, 189 (1985).CrossRefGoogle Scholar
8Brown, W. L., Radiat. Eff. 9, 281 (1986).Google Scholar
9Bartko, J., Hall, B. O., and Schoch, K. F. Jr , J. Appl. Phys. 59, 111 (1986).CrossRefGoogle Scholar
10Wasserman, B., Dresselhaus, M. S., Wolf, M., Wnek, G., and Woodhouse, J. D., J. Appl. Phys. 60, 668 (1986).CrossRefGoogle Scholar
11Sakamoto, M., Wasserman, B., Dresselhaus, M. S., Wnek, G. E., Elman, B. S., and Sandman, D. J., J. Appl. Phys. 60, 2788 (1986).CrossRefGoogle Scholar
12Jenekhe, S. A. and Tibbetts, S. J., J. Polym. Sci. 26, 201 (1988).CrossRefGoogle Scholar
11Venkatessan, T., Calcagno, L., B.Elman, S., and Foti, G., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, New York, 1987), p. 301.Google Scholar
14Reidel, C. and Spohr, R., Radiat. Eff. 42, 69 (1978).CrossRefGoogle Scholar
15Gold, R., Ruddy, F. H., and Roberts, J. H., in the Proceedings of the 11th International Conference on Nuclear Tracks, 1982, Supplement No. 3, 887.Google Scholar
16Kobetich, E. J. and Katz, P., Phys. Rev. 170, 391 (1968).CrossRefGoogle Scholar
17Silk, E. H. L. and Barnes, R. S., Philos. Mag. 4, 970 (1959).CrossRefGoogle Scholar
18Waligorski, M. P. R., Hamm, R. N., and Katz, R., Nucl. Tracks 11, 309 (1986).CrossRefGoogle Scholar
19Teyssier, J. L., Decossas, J. L., and Vareille, J. C., Nucl. Tracks 12, 25 (1986).CrossRefGoogle Scholar
20Northcliffe, L. C. and Schilling, R. F., Nucl. Data A 7, 233 (1970).CrossRefGoogle Scholar
21Ziegler, J. F., in Handbook of Stopping Cross Sections for Energetic Ions in All Elements (Pergamon, Oxford, 1980), Vol. 5.Google Scholar
22Schaible, M. G., Ph. D. thesis, University of Connecticut, 1983 (unpublished), p. 123.Google Scholar
23Bartko, J. (unpublished data, 1988).Google Scholar