Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-10T02:35:11.397Z Has data issue: false hasContentIssue false

Irradiation resistance of nanostructured interfaces in Zr–Nb metallic multilayers

Published online by Cambridge University Press:  07 March 2019

Elton Y. Chen
Affiliation:
Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; and Center for Integrated Nanotechnologies, Department of Nanostructure Physics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Chaitanya Deo*
Affiliation:
Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Rémi Dingreville*
Affiliation:
Center for Integrated Nanotechnologies, Department of Nanostructure Physics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
*
a)Address all correspondence to these authors. e-mail: chaitanya.deo@me.gatech.edu
Get access

Abstract

Irradiation resistance of metallic nanostructured multilayers is determined by the interactions between defects and phase boundaries. However, the dose-dependent interfacial morphology evolution can greatly change the nature of the defect–boundary interaction mechanisms over time. In the present study, we used atomistic models combined with a novel technique based on the accumulation of Frenkel pairs to simulate irradiation processes. We examined dose effects on defect evolutions near zirconium–niobium multilayer phase boundaries. Our simulations enabled us to categorize defect evolution mechanisms in bulk phases into progressing stages of dislocation accumulation, saturation, and coalescence. In the metallic multilayers, we observed a phase boundary absorption mechanism early on during irradiation, while at higher damage levels, the increased irradiation intermixing triggered a phase transformation in the Zr–Nb mixture. This physical phenomenon resulted in the emission of a large quantity of small immobile dislocation loops from the phase boundaries.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, X., Hattar, K., Chen, Y., Shao, L., Li, J., Sun, C., Yu, K., Li, N., Taheri, M.L., Wang, H., Wang, J., and Nastasi, M.: Radiation damage in nanostructured materials. Prog. Mater. Sci. 96, 217321 (2018).CrossRefGoogle Scholar
Rose, M., Balogh, A.G., and Hahn, H.: Instability of irradiation induced defects in nanostructured materials. Nucl. Instrum. Methods Phys. Res., Sect. B 127, 119122 (1997).CrossRefGoogle Scholar
Radiguet, B., Etienne, A., Pareige, P., Sauvage, X., and Valiev, R.: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43, 73387343 (2008).CrossRefGoogle Scholar
Demkowicz, M.J., Anderoglu, O., Zhang, X., and Misra, A.: The influence of ∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu. J. Mater. Res. 26, 16661675 (2011).CrossRefGoogle Scholar
Li, J., Yu, K.Y., Chen, Y., Song, M., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. Nano Lett. 15, 29222927 (2015).CrossRefGoogle ScholarPubMed
Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle ScholarPubMed
Chen, F., Tang, X., Yang, Y., Huang, H., Liu, J., Li, H., and Chen, D.: Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance. J. Nucl. Mater. 468, 164170 (2016).CrossRefGoogle Scholar
Sun, C., Bufford, D., Chen, Y., Kirk, M.A., Wang, Y.Q., Li, M., Wang, H., Maloy, S.A., and Zhang, X.: In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance. Sci. Rep. 4, 3737 (2014).CrossRefGoogle ScholarPubMed
Li, J., Fan, C., Ding, J., Xue, S., Chen, Y., Li, Q., Wang, H., and Zhang, X.: In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au. Sci. Rep. 7, 39484 (2017).CrossRefGoogle ScholarPubMed
Beyerlein, I.J., Mayeur, J.R., Zheng, S., Mara, N.A., Wang, J., and Misra, A.: Emergence of stable interfaces under extreme plastic deformation. Proc. Natl. Acad. Sci. U. S. A. 111, 201319436 (2014).CrossRefGoogle ScholarPubMed
Beyerlein, I.J., Demkowicz, M.J., Misra, A., and Uberuaga, B.P.: Defect-interface interactions. Prog. Mater. Sci. 74, 125210 (2015).CrossRefGoogle Scholar
Chen, E.Y., Dingreville, R., and Deo, C.: Misfit dislocation networks in semi-coherent miscible phase boundaries: An example for U–Zr interfaces. Comput. Mater. Sci. 154, 194203 (2018).CrossRefGoogle Scholar
Wang, J., Zhang, R.F., Zhou, C.Z., Beyerlein, I.J., and Misra, A.: Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int. J. Plast. 53, 4055 (2014).CrossRefGoogle Scholar
Chen, Y., Shao, S., Liu, X-Y., Yadav, S.K., Li, N., Mara, N., and Wang, J.: Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater. 126, 552563 (2017).CrossRefGoogle Scholar
Vattré, A., Jourdan, T., Ding, H., Marinica, M.C., and Demkowicz, M.J.: Non-random walk diffusion enhances the sink strength of semicoherent interfaces. Nat. Commun. 7, 10424 (2016).CrossRefGoogle ScholarPubMed
Zarnas, P.D., Dingreville, R., and Qu, J.: Mechanics of point defect diffusion near dislocations and grain boundaries: A chemomechanical framework. Comput. Mater. Sci. 144, 99112 (2018).CrossRefGoogle Scholar
Heinisch, H.L., Gao, F., and Kurtz, R.J.: The effects of interfaces on radiation damage production in layered metal composites. J. Nucl. Mater. 329, 924928 (2004).CrossRefGoogle Scholar
Zhang, L. and Demkowicz, M.J.: Morphological stability of Cu–Nb nanocomposites under high-energy collision cascades. Appl. Phys. Lett. 103, 061604 (2013).CrossRefGoogle Scholar
Zhang, L. and Demkowicz, M.J.: Radiation-induced mixing between metals of low solid solubility. Acta Mater. 76, 135150 (2014).CrossRefGoogle Scholar
Nikulina, A.V.: Zirconium–niobium alloys for core elements of pressurized water reactors. Met. Sci. Heat Treat. 45, 287292 (2003).CrossRefGoogle Scholar
Burgers, W.G.: On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561586 (1934).CrossRefGoogle Scholar
Pitsch, W. and Schrader, A.: Die Ausscheidungsform des ε-Karbids im Ferrit und im Martensit beim Anlassen. Arch Eisenhüttenwes 29, 715721 (1958).CrossRefGoogle Scholar
Ribis, J., Doriot, S., and Onimus, F.: Shape, orientation relationships and interface structure of beta-Nb nano-particles in neutron irradiated zirconium alloy. J. Nucl. Mater. 511, 1829 (2018).CrossRefGoogle Scholar
Chartier, A., Onofri, C., Van Brutzel, L., Sabathier, C., Dorosh, O., and Jagielski, J.: Early stages of irradiation induced dislocations in urania. Appl. Phys. Lett. 109, 181902 (2016).CrossRefGoogle Scholar
Jostsons, A. and Farrell, K.: Structural damage and its annealing response in neutron irradiated magnesium. Radiat. Eff. 15, 217225 (1972).CrossRefGoogle Scholar
Griffiths, M.: Evolution of microstructure in hcp metals during irradiation. J. Nucl. Mater. 205, 225241 (1993).CrossRefGoogle Scholar
Northwood, D.O., Gilbert, R.W., Bahen, L.E., Kelly, P.M., Blake, R.G., Jostsons, A., Madden, P.K., Faulkner, D., Bell, W., and Adamson, R.B.: Characterization of neutron irradiation damage in zirconium alloys–an international “round-robin” experiment. J. Nucl. Mater. 79, 379394 (1979).CrossRefGoogle Scholar
Griffiths, M., Loretto, M.H., and Smallman, R.E.: Anisotropic distribution of dislocation loops in HVEM-irradiated Zr. Philos. Mag. A 49, 613624 (1984).CrossRefGoogle Scholar
Griffiths, M.: Microstructure evolution in Zr alloys during irradiation: Dose, dose rate, and impurity dependence. J. ASTM Int. 5, 18 (2007).Google Scholar
Griffiths, M.: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190218 (1988).CrossRefGoogle Scholar
Abriata, J.P. and Bolcich, J.C.: The Nb–Zr (Niobium–Zirconium) system. J. Phase Equilib. 3, 3444 (1982).CrossRefGoogle Scholar
Khachaturyan, A.G., Shapiro, S.M., and Semenovskaya, S.: Adaptive phase formation in martensitic transformation. Phys. Rev. B 43, 10832 (1991).CrossRefGoogle ScholarPubMed
Paine, B.M. and Averback, R.S.: Ion beam mixing: Basic experiments. Nucl. Instrum. Methods Phys. Res., Sect. B 7, 666675 (1985).CrossRefGoogle Scholar
Averback, R.S.: Fundamental aspects of ion beam mixing. Nucl. Instrum. Methods Phys. Res., Sect. B 15, 675687 (1986).CrossRefGoogle Scholar
Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Spring Science+Business Media, New York, NY, 2016).Google Scholar
Nastasi, M., Michael, N., Mayer, J., Hirvonen, J.K., and James, M.: Ion-solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, U.K., 1996).CrossRefGoogle Scholar
Fernandez, G.: Thermodynamic analysis of the stable phases in the Zr–Nb system and calculation of the phase diagram. Z. Met. 82, 478487 (1991).Google Scholar
Balluffi, R.W.: High angle grain boundaries as sources or sinks for point defects; Technical Report; Massachusetts Institute of Technology: Cambridge, Department of Materials Science and Engineering, 1979.Google Scholar
Han, W.Z., Demkowicz, M.J., Fu, E.G., Wang, Y.Q., and Misra, A.: Effect of grain boundary character on sink efficiency. Acta Mater. 60, 63416351 (2012).CrossRefGoogle Scholar
Misra, A., Demkowicz, M.J., Zhang, X., and Hoagland, R.G.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 6265 (2007).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (1995).CrossRefGoogle Scholar
Smirnova, D.E. and Starikov, S.V.: An interatomic potential for simulation of Zr–Nb system. Comput. Mater. Sci. 129, 259272 (2017).CrossRefGoogle Scholar
Sand, A.E., Dequeker, J., Becquart, C.S., Domain, C., and Nordlund, K.: Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten. J. Nucl. Mater. 470, 119127 (2016).CrossRefGoogle Scholar
Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).CrossRefGoogle Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRefGoogle Scholar
Crocombette, J-P., Chartier, A., and Weber, W.J.: Atomistic simulation of amorphization thermokinetics in lanthanum pyrozirconate. Appl. Phys. Lett. 88, 051912 (2006).CrossRefGoogle Scholar
Balboa, H., Van Brutzel, L., Chartier, A., and Le Bouar, Y.: Damage characterization of (U, Pu) O under irradiation by molecular dynamics simulations. J. Nucl. Mater. 512, 440449 (2018).CrossRefGoogle Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 18181823 (2010).CrossRefGoogle Scholar
Nordlund, K., Zinkle, S.J., Sand, A.E., Granberg, F., Averback, R.S., Stoller, R., Suzudo, T., Malerba, L., Banhart, F., Weber, W.J., Willaime, F., Dudarev, S.L., and Simeone, D.: Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9, 1084 (2018).CrossRefGoogle ScholarPubMed