Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T12:44:37.628Z Has data issue: false hasContentIssue false

Irradiation-disorder Creation in SrTiO3

Published online by Cambridge University Press:  31 January 2011

S. Soulet
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-IN2P3, 91405 OrsayCampus, France, and CEA-Cadarache, DESD/SEP/LEMC, 13108 Saint-Paul-lez-Durance, France
J. Chaumont*
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-IN2P3, 91405 OrsayCampus, France
C. Sabathier
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-IN2P3, 91405 OrsayCampus, France, and CEA-Cadarache, DESD/SEP/LEMC, 13108 Saint-Paul-lez-Durance, France
J-C. Krupa
Affiliation:
Institut de Physique Nucléaire, CNRS-IN2P3, 91406 Orsay Cedex, France
*
a)Address all correspondence to this author. e-mail: chaumont@csnsm.in2p3fr
Get access

Abstract

The chemical durability of crystalline matrices loaded with actinides can be stronglyreduced when α-decays generate enough disorder to induce a crystalline to amorphoustransition. The alpha decay of actinides in SrTiO3 (α-recoils and α-particles) was simulated using Pb and He irradiation. This study shows that the He-ion annealingprocess that operates in some apatitic structure is negligible in SrTiO3 where thedisorder evolution at room temperature has a strong sigmoid dependence on dose. Thedirect-impact/defect-stimulated model, the cascade quenching/epitaxial recrystallizationmodel, and a direct-impact/cascade-overlap model were used to reproduce the SrTiO3-disorder evolution under Pb-ion irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ewing, R.C., Weber, W.J., and Lutze, W., in Disposal of Weapons Plutonium, edited by Merz, E.R. and Walter, C.E. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, p. 65.CrossRefGoogle Scholar
Sinclair, W. and Ringwood, A.E., Geochem. J. 15, 229 (1981).CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T. de La, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M.A., Salje, E.H.K., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
Ringwood, A.E., Oversby, V.M., and Sinclair, W., in Scientific Basis for Nuclear Waste Management, edited by Northrup, C.J.M. Jr. (Plenum Press, New York, 1980), Vol. 2, p. 273.CrossRefGoogle Scholar
Ouchani, S., Dran, J-C., and Chaumont, J., Nucl. Instrum. Meth. B 132, 447 (1997).CrossRefGoogle Scholar
Cottereau, E., Camplan, J., Chaumont, J., and Meunier, R, Mater. Sci. Eng. B 2, 217 (1989).CrossRefGoogle Scholar
Chaumont, J., Lalu, F., Salomé, M., Lamoise, A.M., and Bernas, H., Nucl. Instrum. Meth. B 9, 344 (1981).Google Scholar
Ziegler, J.F., Biersack, J.P., and Marwick, D.J., SRIM-2000 The Stopping and Range of Ions in Matters (IBM Corporation, New York, 1999).Google Scholar
Soulet, S., Chaumont, J., Krupa, J.C., and Carpena, J., Radiat. Eff. Detects Solids 153, 1 (2001).Google Scholar
Weber, W.J., Jiang, W., Thevuthasan, S., Williford, R.E., Meldrum, A., and Boatner, L.A., in Defects and Surface-Induced Effects in Advanced Perovskites, edited by Borstel, G. and Krumins, A. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999).Google Scholar
Thevuthasan, S., Jiang, W., Shutthanandan, V., and Weber, W.J., J. Nucl. Mater. 289, 204 (2001).CrossRefGoogle Scholar
Thevuthasan, S. (personal communication).Google Scholar
Gibbons, J.F., Proc. IEEE 60, 1062 (1972).CrossRefGoogle Scholar
Weber, W.J., Nucl. Instrum. Meth. B 166–167, 98 (2000).CrossRefGoogle Scholar
Weber, W.J., J. Am. Ceram. Soc. 76, 1729 (1993).CrossRefGoogle Scholar
Pascussi, M.R., Hutchinson, J.L., and Hobbs, L.W., Rad. Eff. 74, 219 (1983).Google Scholar
Gong, W.L., Wang, L.M., Ewing, R.C., and Zhang, J., Phys. Rev. B 45, 3800 (1996).CrossRefGoogle Scholar
Hecking, N., Heidemann, K.F., and Te Kaat, E., Nucl. Instrum. Meth. Phys. B 15, 760 (1986).CrossRefGoogle Scholar
Wang, S.X., Wang, L.M., and Ewing, R.C., Phys. Rev. B 63, 1 (2000).Google Scholar
Weber, W.J., J. Mater. Res. 5, 2687 (1990).CrossRefGoogle Scholar
Carter, G. and Webb, R.P., Rad. Eff. Lett. 43, 19 (1979).CrossRefGoogle Scholar
Dennis, J.R. and Hale, E.B., J. Appl. Phys. 49, 1119 (1978).CrossRefGoogle Scholar
Webb, R.P. and Carter, G., Rad. Eff. Lett. 59, 69 (1981).CrossRefGoogle Scholar
Soulet, S., Carpena, J., Chaumont, J., Kaitasov, O., Krupa, J.C., and Ruault, M.O., Nucl. Instrum. Methods Phys. Res. B 184–3, 383 (2001).CrossRefGoogle Scholar