Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T13:02:18.375Z Has data issue: false hasContentIssue false

Irreversible hydrogenation of solid C60 with and without catalytic metals

Published online by Cambridge University Press:  31 January 2011

Eric L. Brosha
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
John Davey
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Fernando H. Garzon
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Shimshon Gottesfeld
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The dehydrogenation of C60 · H18.7 was studied using thermogravimetric and powder x-ray diffraction analysis. C60 · H18.7 was found to be stable up to 430 °C in Ar at which point the release of hydrogen initiated the collapse of a fraction of fullerene molecules. X-ray diffraction analysis performed on C60 · H18.7 samples dehydrogenated at 454, 475, and 600 °C displayed an increasing volume fraction of amorphous material. The decomposition product comprises randomly oriented, single-layer graphite sheets. Evolved gas analysis using gas chromatograph (GC) mass spectroscopy confirmed the presence of both H2 and methane upon dehydrogenation. Attempts to improve reversibility or reduce hydrogenation/ dehydrogenation temperatures by addition of Ru and Pt catalysts were unsuccessful.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Michel, F., Fieseler, H., Meyer, G., and Theiben, F., Int. J. Hydrogen Energy 23 (3), 191 (1998).Google Scholar
2.Hansel, J. G., Mattern, G. W., and Miller, R. N., Int. J. Hydrogen Energy 18 (9), 783 (1993).Google Scholar
3.Dillon, A.C., Jones, K.M., Bekkedahl, T. A., Kiang, C. H., Bethune, D.S., and Neben, M. J., Nature 386, 377 (1997).Google Scholar
4.Chambers, A., Park, C., Baker, R.T.K, and Rodriguez, N. M., J. Phys. Chem. B 102, 22 (1998).Google Scholar
5.Haufler, R.E., Canceicao, J., Chai, Y., Byrne, N.E., Flanagan, S., Haley, M.M., O'Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M.A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F., and Smalley, R. E., J. Phys. Chem. 94, 8634 (1990).Google Scholar
6.Sui, Y., Qian, J., Zhang, J., Zhou, X., Gu, Z., Wu, Y., Fu, H., and Wang, J., Fullerene Sci. Technol. 4 (5), 813 (1996).Google Scholar
7.Jin, C., Hettich, R., Compton, R., Joyce, D., Blencoe, J., and Burch, T., J. Phys. Chem. 98, 4215 (1994).CrossRefGoogle Scholar
8.Morosin, B., Henderson, C., and Schirber, J. E., Appl. Phys. A 59, 179 (1994).Google Scholar
9.Nozu, R. and Matsumoto, O., J. Electrochem. Soc. 143, 6, 1919 (1996).CrossRefGoogle Scholar
10.Darwish, A. D., Abdul-Sada, A. K., Langley, G. J., Kroto, H. W., Taylor, R., and Walton, D. R. M., J. Chem. Soc. Perkin Trans. 2, 2359 (1995).Google Scholar
11.Henderson, C. C. and Cahill, P. A., Science 259, 26 March (1993).Google Scholar
12.Ruchardt, C., Gerst, M., Ebenhoch, J., Beckhaus, H.D., Campbell, E. E. B., Tellgmann, R., Schwartz, H., Weiske, T., and Pitter, S., Angew. Chem., Int. Ed. Engl. 32, 584 (1993).Google Scholar
13.Attalla, M. I., Vassallo, A. M., Tattam, B. N., and Hanna, J. V., J. Phys. Chem. 97, 6329 (1991).Google Scholar
14.Henderson, C. C. and Cahill, P. A., Science 259, 1885 (1992).CrossRefGoogle Scholar
15.Fu, P. P. and Harvey, R. G., Chem. Rev. 78, 317 (1978).Google Scholar
16. MER Corporation Industry Report, 1, No. 2, June (1996).Google Scholar
17.Johnson, J. R. and Reilly, J. J., The Use of Manganese Substituted Ferrotitanium Alloys for Energy Storage, Proceedings of the International Conference on Alternative Energy Sources, Miami Beach, FL, December 5–7, 1977.Google Scholar
18.Heiney, P. A., J. Phys. Chem. Solids 53 (11), 1333 (1992).CrossRefGoogle Scholar
19.Abrefah, J., Olander, D. R., Balooch, M., and Siekhaus, W. J., Appl. Phys. Lett. 60 (11), 16 (1992).Google Scholar
20.Mathews, C. K., Baba, M. S., Narasimhan, T. S. L., Sivaraman, N., Srinivasan, T. G., and Rao, P. R. V., J. Phys. Chem. 96, 3566 (1992).Google Scholar
21.Xing, W., Xue, J. S., Zheng, T., Gibaud, A., and Dahn, J. R., J. Electrochem. Soc. 143 (11), 3482 (1996).Google Scholar
22.Liu, Y., Xue, J. S., Zheng, T., and Dahn, J. R., Carbon 34 (2), 193 (1996).CrossRefGoogle Scholar
23.Yoshida, Z., Dogane, I., Ikehira, H., and Endo, T., Chem. Phys. Lett. 201 (5–6), 481 (1993).CrossRefGoogle Scholar
24.Kubaschewski, O., Alcock, C. B., and Spencer, P. J., Materials Thermo-Chemistry, 6th ed. (Pergamon, Oxford, 1993), pp. 265, 266, 280.Google Scholar