Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-01T21:17:14.651Z Has data issue: false hasContentIssue false

Layer-by-layer assembly of polymers and anisotropic nanomaterials using spray-based approach

Published online by Cambridge University Press:  10 March 2020

Souvik De*
Affiliation:
Department of Applied Chemistry, Jabalpur Engineering College, Jabalpur, Madhya Pradesh 482011, India Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
Anish Patel
Affiliation:
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
Jodie L. Lutkenhaus
Affiliation:
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
*
a)Address all correspondence to this author. e-mail: souvikiitm@gmail.com
Get access

Abstract

Traditional dip-assisted layer-by-layer (LbL) assembly produces robust and conformal coatings, but it is time-consuming. Alternatively, spray-assisted layer-by-layer (SA-LbL) assembly has gained interest due to rapid processing resulting from the short adsorption time. However, it is challenging to assemble anisotropic nanomaterials using this spray-based approach. This is because the standard approach for fabricating “all-polyelectrolyte” LbL films does not necessarily give rise to satisfactory film growth when one of the adsorbing components is anisotropic. Here, polymers are combined with a model anisotropic nanomaterial via SA-LbL assembly. Specifically, graphene oxide (GO) is investigated, and the effect of anchor layer, colloidal stability, charge distribution along the carbon framework, and concentration of polymer on the growth and the film quality is examined to gain insight into how to achieve pinhole-free, smooth polymer/GO SA-LbL coatings. This approach might be applicable to other anisotropic nanomaterials such as clays or 2D nanomaterials for future development of uniform coatings by spraying.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Decher, G., Hong, J.D., and Schmitt, J.: Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211, 831 (1992).CrossRefGoogle Scholar
Decher, G.: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232 (1997).CrossRefGoogle Scholar
Richardson, J.J., Björnmalm, M., and Caruso, F.: Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).CrossRefGoogle ScholarPubMed
Nabar, G., Souva, M., Lee, K.H., De, S., Lutkenhaus, J., Wyslouzil, B., and Winter, J.O.: High-throughput nanomanufacturing via spray processes. In Nanotechnology Commercialization Edited by T.O. Mensah, B. Wang, G. Bothun, J. Winter and V. Davis, (John Wiley & Sons, Inc., USA, 2017); p. 101.CrossRefGoogle Scholar
Jeon, J-W., Kwon, S.R., and Lutkenhaus, J.L.: Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J. Mater. Chem. A. 3, 3757 (2015).CrossRefGoogle Scholar
Guin, T., Krecker, M., Milhorn, A., Hagen, D.A., Stevens, B., and Grunlan, J.C.: Exceptional flame resistance and gas barrier with thick multilayer nanobrick wall thin films. Adv. Mater. Interfaces 2, 1500214 (2015).CrossRefGoogle Scholar
Andres, C.M., Larraza, I., Corrales, T., and Kotov, N.A.: Nanocomposite microcontainers. Adv. Mater. 24, 4597 (2012).CrossRefGoogle ScholarPubMed
Escobar-Ferrand, L., Li, D., Lee, D., and Durning, C.J.: All-nanoparticle layer-by-layer surface modification of micro-and ultrafiltration membranes. Langmuir 30, 5545 (2014).CrossRefGoogle ScholarPubMed
Lee, G.S., Lee, Y-J., and Yoon, K.B.: Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers. J. Am. Chem. Soc. 123, 9769 (2001).CrossRefGoogle ScholarPubMed
Kang, Y., Emdadi, L., Lee, M.J., Liu, D., and Mi, B.: Layer-by-layer assembly of zeolite/polyelectrolyte nanocomposite membranes with high zeolite loading. Environ. Sci. Technol. Lett. 1, 504 (2014).CrossRefGoogle Scholar
De, S., Nandasiri, M.I., Schaef, H.T., McGrail, B.P., Nune, S.K., and Lutkenhaus, J.L.: Water-based assembly of polymer–metal organic framework (MOF) functional coatings. Adv. Mater. Interfaces 4, 1600905 (2016).CrossRefGoogle Scholar
Krogman, K.C., Lowery, J.L., Zacharia, N.S., Rutledge, G.C., and Hammond, P.T.: Spraying asymmetry into functional membranes layer-by-layer. Nat. Mater. 8, 512 (2009).CrossRefGoogle ScholarPubMed
Sasaki, T., Ebina, Y., Tanaka, T., Harada, M., Watanabe, M., and Decher, G.: Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 13, 4661 (2001).CrossRefGoogle Scholar
Qi, A., Chan, P., Ho, J., Rajapaksa, A., Friend, J., and Yeo, L.: Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication. ACS Nano 5, 9583 (2011).CrossRefGoogle ScholarPubMed
Lutkenhaus, J.L., Hrabak, K.D., McEnnis, K., and Hammond, P.T.: Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies. J. Am. Chem. Soc. 127, 17228 (2005).CrossRefGoogle ScholarPubMed
Sukhorukov, G.B., Schmitt, J., and Decher, G.: Reversible swelling of polyanion/polycation multilayer films in solutions of different ionic strength. Bunsen-Ges. Phys. Chem., Ber. 100, 948 (1996).CrossRefGoogle Scholar
Lvov, Y., Haas, H., Decher, G., Moehwald, H., and Kalachev, A.: Assembly of polyelectrolyte molecular films onto plasma-treated glass. J. Phys. Chem. 97, 12835 (1993).CrossRefGoogle Scholar
Lavalle, P., Gergely, C., Cuisinier, F.J.G., Decher, G., Schaaf, P., Voegel, J.C., and Picart, C.: Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: An in situ atomic force microscopy study. Macromolecules 35, 4458 (2002).CrossRefGoogle Scholar
Izquierdo, A., Ono, S.S., Voegel, J.C., Schaaf, P., and Decher, G.: Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21, 7558 (2005).CrossRefGoogle ScholarPubMed
Zhu, J., Zhang, H., and Kotov, N.A.: Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene. ACS Nano 7, 4818 (2013).CrossRefGoogle ScholarPubMed
Merindol, R., Diabang, S., Felix, O., Roland, T., Gauthier, C., and Decher, G.: Bio-inspired multiproperty materials: Strong, self-healing, and transparent artificial wood nanostructures. ACS Nano 9, 1127 (2015).CrossRefGoogle ScholarPubMed
Xiang, F., Parviz, D., Givens, T.M., Tzeng, P., Davis, E.M., Stafford, C.M., Green, M.J., and Grunlan, J.C.: Stiff and transparent multilayer thin films prepared through hydrogen-bonding layer-by-layer assembly of graphene and polymer. Adv. Funct. Mater. 26, 2143 (2016).CrossRefGoogle Scholar
Guin, T., Stevens, B., Krecker, M., D'Angelo, J., Humood, M., Song, Y., Smith, R., Polycarpou, A., and Grunlan, J.C.: Ultrastrong, chemically resistant reduced graphene oxide-based multilayer thin films with damage detection capability. ACS Appl. Mater. Interfaces 8, 6229 (2016).CrossRefGoogle ScholarPubMed
Qin, S., Pour, M.G., Lazar, S., Köklükaya, O., Gerringer, J., Song, Y., Wågberg, L., and Grunlan, J.C.: Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6, 1801424 (2019).CrossRefGoogle Scholar
Schlenoff, J.B., Dubas, S.T., and Farhat, T.: Sprayed polyelectrolyte multilayers. Langmuir 16, 9968 (2000).CrossRefGoogle Scholar
Lu, C., Dönch, I., Nolte, M., and Fery, A.: Au nanoparticle-based multilayer ultrathin films with covalently linked nanostructures: Spraying layer-by-layer assembly and mechanical property characterization. Chem. Mater. 18, 6204 (2006).CrossRefGoogle Scholar
Krogman, K.C., Zacharia, N.S., Schroeder, S., and Hammond, P.T.: Automated process for improved uniformity and versatility of layer-by-layer deposition. Langmuir 23, 3137 (2007).CrossRefGoogle ScholarPubMed
Nogueira, G.M., Banerjee, D., Cohen, R.E., and Rubner, M.F.: Spray-layer-by-layer assembly can more rapidly produce optical-quality multistack heterostructures. Langmuir 27, 7860 (2011).CrossRefGoogle ScholarPubMed
Suarez-Martinez, P.C., Robinson, J., An, H., Nahas, R.C., Cinoman, D., and Lutkenhaus, J.L.: Spray-on polymer–clay multilayers as a superior anticorrosion metal pretreatment. Macromol. Mater. Eng. 302, 1600552 (2017).CrossRefGoogle Scholar
Kwon, S.R., Jeon, J-W., and Lutkenhaus, J.L.: Sprayable, paintable layer-by-layer polyaniline nanofiber/graphene electrodes. RSC Adv. 5, 14994 (2015).CrossRefGoogle Scholar
Blell, R., Lin, X., Lindström, T., Ankerfors, M., Pauly, M., Felix, O., and Decher, G.: Generating in-plane orientational order in multilayer films prepared by spray-assisted layer-by-layer assembly. ACS Nano 11, 84 (2017).CrossRefGoogle ScholarPubMed
O'Neal, J.T., Bolen, M.J., Dai, E.Y., and Lutkenhaus, J.L.: Hydrogen-bonded polymer nanocomposites containing discrete layers of gold nanoparticles. J. Colloid Interface Sci. 485, 260 (2017).CrossRefGoogle ScholarPubMed
Hu, H., Pauly, M., Felix, O., and Decher, G.: Spray-assisted alignment of layer-by-layer assembled silver nanowires: A general approach for the preparation of highly anisotropic nano-composite films. Nanoscale 9, 1307 (2017).CrossRefGoogle ScholarPubMed
Heo, J., Choi, M., and Hong, J.: Facile surface modification of polyethylene film via spray-assisted layer-by-layer self-assembly of graphene oxide for oxygen barrier properties. Sci. Rep. 9, 2754 (2019).CrossRefGoogle ScholarPubMed
Zhao, M.Q., Trainor, N., Ren, C.E., Torelli, M., Anasori, B., and Gogotsi, Y.: Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 4, 1800639 (2019).CrossRefGoogle Scholar
Rani, A., Chung, K., Kwon, J., Kim, S.J., Jang, Y.H., Jang, Y.J., Quan, L.N., Yoon, M., Park, J.H., and Kim, D.H.: Layer-by-layer self-assembled graphene multilayers as Pt-free alternative counter electrodes in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8, 11488 (2016).CrossRefGoogle ScholarPubMed
Hong, J. and Kang, S.W.: Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition. J. Nanosci. Nanotechnol. 11, 7771 (2011).CrossRefGoogle ScholarPubMed
De, S., Purcell, C., Murley, J., Flouda, P., Shah, S., Green, M., and Lutkenhaus, J.: Spray-on reduced graphene oxide–poly(vinyl alcohol) supercapacitors for flexible energy and power. Adv. Mater. Interfaces 5, 1801237 (2018).CrossRefGoogle Scholar
Stevens, B., Dessiatova, E., Hagen, D.A., Todd, A.D., Bielawski, C.W., and Grunlan, J.C.: Low-temperature thermal reduction of graphene oxide nanobrick walls: Unique combination of high gas barrier and low resistivity in fully organic polyelectrolyte multilayer thin films. ACS Appl. Mater. Interfaces 6, 9942 (2014).CrossRefGoogle ScholarPubMed
Yang, Y.H., Bolling, L., Priolo, M.A., and Grunlan, J.C.: Super gas barrier and selectivity of graphene oxide‐polymer multilayer thin films. Adv. Mater. 25, 503 (2013).CrossRefGoogle ScholarPubMed
De, S. and Lutkenhaus, J.L.: Corrosion behaviour of eco-friendly airbrushed reduced graphene oxide–poly(vinyl alcohol) coatings. Green Chem. 20, 506 (2018).CrossRefGoogle Scholar
Xiong, R., Hu, K., Grant, A.M., Ma, R., Xu, W., Lu, C., Zhang, X., and Tsukruk, V.V.: Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Mater. 28, 1501 (2016).CrossRefGoogle ScholarPubMed
Zhang, D., Tong, J., and Xia, B.: Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators, B 197, 66 (2014).CrossRefGoogle Scholar
Zhang, D., Tong, J., Xia, B., and Xue, Q.: Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators, B 203, 263 (2014).CrossRefGoogle Scholar
Sellam, C., Zhai, Z., Zahabi, H., Picot, O.T., Deng, H., Fu, Q., Bilotti, E., and Peijs, T.: High mechanical reinforcing efficiency of layered poly(vinyl alcohol)–graphene oxide nanocomposites. Nanocomposites 1, 89 (2015).CrossRefGoogle Scholar
Lee, S-M., Jeong, H., Kim, N.H., Kim, H-G., and Lee, J.H.: Layer-by-layer assembled graphene oxide/polydiallydimethylammonium chloride composites for hydrogen gas barrier application. Adv. Compos. Mater. 27, 457 (2018).CrossRefGoogle Scholar
Vallés, C., Zhang, X., Cao, J., Lin, F., Young, R.J., Lombardo, A., Ferrari, A.C., Burk, L., Mülhaupt, R., and Kinloch, I.A.: Graphene/polyelectrolyte layer-by-layer coatings for electromagnetic interference shielding. ACS Appl. Nano Mater. 2, 5272 (2019).CrossRefGoogle Scholar
Akgöl, Y., Cramer, C., Hofmann, C., Karatas, Y., Wiemhöfer, H-D., and Schönhoff, M.: Humidity-Dependent DC conductivity of polyelectrolyte multilayers: Protons or other small ions as charge carriers? Macromolecules 43, 7282 (2010).CrossRefGoogle Scholar
Dubas, S.T. and Schlenoff, J.B.: Polyelectrolyte multilayers containing a weak polyacid: Construction and deconstruction. Macromolecules 34, 3736 (2001).CrossRefGoogle Scholar
Ladhari, N., Hemmerlé, J., Ringwald, C., Haikel, Y., Voegel, J-C., Schaaf, P., and Ball, V.: Stratified PEI-(PSS-PDADMAC)20-PSS-(PDADMAC-TiO2)n multilayer films produced by spray deposition. Colloids Surf., A 322, 142 (2008).CrossRefGoogle Scholar
Ladhari, N., Hemmerlé, J., Haikel, Y., Voegel, J-C., Schaaf, P., and Ball, V.: Stability of embossed PEI-(PSS-PDADMAC)20 multilayer films versus storage time and versus a change in ionic strength. Appl. Surf. Sci. 255, 1988 (2008).CrossRefGoogle Scholar
Wågberg, L., Decher, G., Norgren, M., Lindström, T., Ankerfors, M., and Axnäs, K.: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24, 784 (2008).CrossRefGoogle ScholarPubMed
Willner, I., Eichen, Y., Frank, A.J., and Fox, M.A.: Photoinduced electron-transfer processes using organized redox-functionalized bipyridinium-polyethylenimine-titania colloids and particulate assemblies. J. Phys. Chem. 97, 7264 (1993).CrossRefGoogle Scholar
Gu, Y., Ma, Y., Vogt, B.D., and Zacharia, N.S.: Contraction of weak polyelectrolyte multilayers in response to organic solvents. Soft Matter 12, 1859 (2016).CrossRefGoogle ScholarPubMed
Shiratori, S.S. and Rubner, M.F.: pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33, 4213 (2000).CrossRefGoogle Scholar
Stevens, B., Guin, T., Sarwar, O., John, A., Paton, K.R., Coleman, J.N., and Grunlan, J.C.: Highly conductive graphene and polyelectrolyte multilayer thin films produced from aqueous suspension. Macromol. Rapid Commun. 37, 1790 (2016).CrossRefGoogle ScholarPubMed
Hummers, W.S. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar