Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T01:49:56.788Z Has data issue: false hasContentIssue false

Local piezoelectric and ferroelectric responses in nanotube-patterned thin films of BaTiO3 synthesized hydrothermally at 200 °C

Published online by Cambridge University Press:  01 March 2006

Rosalía Poyato
Affiliation:
Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269
Bryan D. Huey
Affiliation:
Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269
Nitin P. Padture*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
*
b) Address all correspondence to this author.e-mail: padture.1@osu.edu
Get access

Abstract

Piezoresponse atomic-force microscopy (PFM) has been used to characterize the local piezoelectric properties of a novel, nanotube-patterned (“honeycomb”) thin film of BaTiO3 on Ti substrate synthesized hydrothermally at 200 °C. PFM amplitude and phase images, prior to the application of any direct current (dc) field, show ring-shaped piezoelectric regions that correspond to the nanostructure of this film. These results show clearly that the as-synthesized nanotube-patterned BaTiO3 thin film is piezoelectric, with a net spontaneous polarization perpendicular to the film–substrate interface. In addition, polarization switching and hysteresis were observed as a function of applied dc field, confirming that this novel fabrication procedure results in unique configurations of BaTiO3 film that are also ferroelectric.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Setter, N., Waser, R.: Electroceramic materials. Acta Mater. 48, 151 (2000).CrossRefGoogle Scholar
2.Morrison, F.D., Luo, Y., Szafraniak, I., Nagarajan, V., Wehrspohn, R.B., Steinhart, M., Wendorff, J.H., Zakharov, N.D., Mishina, E.D., Vorotilov, K.A., Sigov, A.S., Nakabayashi, S., Alexe, M., Ramesh, R., Scott, J.F.: Ferroelectric nanotubes. Rev. Adv. Mater. Sci. 4, 114 (2003).Google Scholar
3.Chu, M.W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M., Gosele, U.: Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87 (2004).Google Scholar
4.Zhang, X.Y., Zhao, X., Lai, C.W., Wang, J., Tang, X.G., Dai, J.Y.: Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays. Appl. Phys. Lett. 85, 4190 (2004).CrossRefGoogle Scholar
5.Ghosez, P., Rabe, K.M.: Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett. 76, 2767 (2000).CrossRefGoogle Scholar
6.Hernandez, B.A., Chang, K.S., Fisher, E.R., Dorhout, P.K.: Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480 (2002).Google Scholar
7.Nagarajan, V., Roytburd, A.L., Stanishevsky, A., Prasertchoung, S., Zhou, T., Chen, L., Melngailis, J., Auciello, O., Ramesh, R.: Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43 (2003).CrossRefGoogle ScholarPubMed
8.Mao, Y., Banerjee, S., Wong, S.S.: Large-scale synthesis of single-crystal line perovskite nanostructures. J. Am. Chem. Soc. 125, 15718 (2003).Google Scholar
9.Luo, Y., Szafraniak, I., Zakharov, N.D., Nagarajan, V., Steinhart, M., Wehrspohn, R.B., Wendorff, J.H., Ramesh, R., Alexe, M.: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 (2003).Google Scholar
10.Luo, Y., Szafraniak, I., Zakharov, N.D., Nagarajan, V., Wehrspohn, R.B., Steinhart, M., Wendorff, J.H., Zakharov, N.D., Ramesh, R., Alexe, M.: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Integr. Ferroelectr. 59, 1513 (2003).Google Scholar
11.Yun, W.S., Urban, J.J., Gu, Q., Park, H.: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447 (2002).Google Scholar
12.Urban, J.J., Spanier, J.E., Ouyang, L., Yun, W.S., Park, H.: Single-crystalline barium titanate nanowires. Adv. Mater. 15, 423 (2003).CrossRefGoogle Scholar
13.Padture, N.P., Wei, X.: Hydrothermal synthesis of thin films of barium titanate ceramic nanotubes at 200 °C. J. Am. Ceram. Soc. 86, 2215 (2003).Google Scholar
14.Wei, X., Vasiliev, A., Padture, N.P.: Nanotubes patterned thin films of barium-strontium titanate (BST). J. Mater. Res. 20, 2140 (2005).CrossRefGoogle Scholar
15.Franke, K., Besold, J., Haessler, W., Seegebarth, C.: Modification and detection of domains on ferroelectric PZT films by scanning force microscopy. Surf. Sci. 302, L283 (1994).Google Scholar
16.Gruverman, A., Auciello, O., Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Ann. Rev. Mater. Sci. 28, 101 (1998).CrossRefGoogle Scholar
17.Huey, B.D., Ramanujan, C., Bobji, M., Blendell, J.E., White, G., Szoszkiewicz, R., Kulik, A.: The importance of distributed loading and cantilever angle in piezo-force microscopy. J. Electroceram. 13, 287 (2004).Google Scholar
18.Kolosov, O.V., Castell, M.R., Marsh, C.D., Briggs, G.A.D., Kamins, T.I., Williams, R.S.: Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 81, 1046 (1998).Google Scholar
19.Huey, B.D., Nath, R., Garcia, R.E., Blendell, J.E.: Challenges and results for quantitative piezoelectric hysteresis measurements by piezo force microscopy. Microsc. Microanal. 11, 6 (2005).Google Scholar
20.Warren, W.L., Tuttle, B.A., Dimos, D., Pike, G.E., Shareef, H.N. Al, Ramesh, R., Evans, J.T.: Imprint in ferroelectric capacitors. Jpn. J. Appl. Phys. 35, 1521 (1996).Google Scholar
21.Kholkin, A.L., Brooks, K.G., Taylor, D.V., Hiboux, S., Setter, N.: Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 22, 1045 (1998).Google Scholar
22.Poyato, R., Calzada, M.L., Pardo, L.: Effects of substrate annealing and post-crystallization thermal treatments on the functional properties of preferentially oriented (Pb,Ca)TiO3 thin films. J. Appl. Phys. 93, 4081 (2003).CrossRefGoogle Scholar
23.Shvartsman, V.V., Pankrashkin, A.V., Afanasjev, V.P., Kaptelov, E.Y., Pronin, I.P., Kholkin, A.L.: Piezoelectric properties of self-polarized Pb(ZrxTi1−x)O3 thin films probed by scanning force microscopy. Integr. Ferroelectr. 29, 103 (2005).CrossRefGoogle Scholar
24.Balaraman, D., Raj, P.M., Wan, L., Abothu, I.R., Bhattacharya, S., Dalmia, S., Lance, M.J., Swaminathan, M., Sacks, M.D., Tummala, R.R.: BaTiO3 films by low-temperature hydrothermal techniques for next generation packaging applications. J. Electroceram. 13, 95 (2004).Google Scholar