Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-08T08:50:37.069Z Has data issue: false hasContentIssue false

Low temperature stabilization of zirconia by Mn through Co-precipitated hydroxide gel route

Published online by Cambridge University Press:  03 March 2011

A. Keshavaraja
Affiliation:
National Chemical Laboratory, Pune 411 008, India
A. V. Ramaswamy
Affiliation:
National Chemical Laboratory, Pune 411 008, India
Get access

Extract

Stabilization of zirconia into cubic phase is achieved by partly substituting Zr4+ with Mn4+ ions (5–30 mole %) via hydroxide gel formation and subsequent calcination at 773 K and is supported by XRD and IR data. A linear correlation between the lattice parameter and the Mn content confirms the incorporation of Mn into ZrO2. The XPS and TPR results provide some evidence for the presence of Mn4+ ions in these samples which have a surface area of about 100 m2 g-1 and are stable in the cubic phase up to 973 K. On reduction above 973 K, the cubic phase is stabilized probably by Mn2+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Etsell, T. H. and Flengas, S. N., Chem. Rev. 70, 1970 (1970).CrossRefGoogle Scholar
2Garvie, R. S., Hannink, R. H., and Pascoe, R. T., Nature 258, 703 (1975).CrossRefGoogle Scholar
3Fischer, G., Ceram. Bull. 65, 1355 (1986).Google Scholar
4Yokoyama, T., Setoyama, T., Fujita, N., Nakajima, M., Maki, T., and Fujii, K., Appl. Catal. 88, 149 (1992).CrossRefGoogle Scholar
5Ruff, O. and Abert, F., Z. Anorg. Allg. Chem. 180, 19 (1929).CrossRefGoogle Scholar
6Yao, H. C. and Bettman, M., J. Catal. 41, 349 (1976).CrossRefGoogle Scholar
7Davis, B. H., Appl. Surf. Sci. 19, 200 (1984).CrossRefGoogle Scholar
8Silver, R. G., Hou, C. J., and Ekerdt, J. G., J. Catal. 118, 400 (1989).CrossRefGoogle Scholar
9Ishizawa, H., Sakurai, O., Mizutani, N., and Kato, M., Am. Ceram. Soc. Bull. 65, 1399 (1986).Google Scholar
10George, A. M., Mishra, N. C., and Jayadevan, N. C., J. Mater. Sci. Lett. 11, 404 (1992).CrossRefGoogle Scholar
11Wu, P., Kershaw, R., Dwight, K., and Wold, A., Mater. Res. Bull. XXIII, 475 (1988).CrossRefGoogle Scholar
12Long, Y. C., Zhang, Z. D., Dwight, K., and Wold, A., Mater. Res. Bull. XXIII, 631 (1988).CrossRefGoogle Scholar
13Hoch, M. and Mathur, M., J. Am. Ceram. Soc. 45, 373 (1962).CrossRefGoogle Scholar
14Fyfe, W. S., Anal. Chem. 23, 174 (1951).CrossRefGoogle Scholar
15McDevitt, N. T. and Baun, W.L., J. Am. Ceram. Soc. 47, 622 (1964).CrossRefGoogle Scholar
16Broekhoff, J. C. P. and Linsen, B. G., in Physical and Chemical Aspects of Adsorbents and Catalysis, edited by Linsen, B. G. (Academic Press, New York, 1970), Chap. 1, pp. 162.Google Scholar
17Keshavaraja, A. and Ramaswamy, A. V., unpublished results.Google Scholar