Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T18:30:53.870Z Has data issue: false hasContentIssue false

A mathematical model for chemical vapor infiltration with microwave heating and external cooling

Published online by Cambridge University Press:  31 January 2011

Deepak Gupta
Affiliation:
Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
James W. Evans*
Affiliation:
Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
*
a)Address correspondence to this author.
Get access

Abstract

A mathematical model has been used to compute temperature profiles in ceramic preforms that are heated by microwaves. The temperature profiles were then input to a second part of the model describing chemical vapor infiltration of the preform, that is the diffusion of gaseous reactants, heterogeneous reaction, and evolution of the pore structure. Equations were solved numerically for parameters corresponding to the infiltration of SiC preforms by pyrolysis of trichloromethylsilane. While based on some simplifications, the model leads to the conclusion that infiltration proceeds more rapidly, and to a greater extent, with microwave heating/external cooling than in isothermal infiltration. The model suggests that infiltration might be optimized by manipulation of microwave power and external cooling. The computed extent of infiltration is seen to be very sensitive to the initial pore size.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hannache, H. M., Quenisset, J. M., Naslain, R., and Heraud, L., J. Mater. Sci. 19, 202 (1984).CrossRefGoogle Scholar
2Rossignol, J. Y., Quenisset, J. M., and Naslain, R., Composites 18 (2), 135 (1987).CrossRefGoogle Scholar
3Caputo, A. J., Lackey, W. J., and Stinton, D. P., Ceram. Eng. and Sci. Proc. 6 (7–8), 694 (1985).CrossRefGoogle Scholar
4Caputo, A. J., Stinton, D. P., Lowden, R. A., and Besmann, T. M., Am. Ceram. Soc. Bull. 66 (2), 368 (1987).Google Scholar
5Sugiyama, K. and Nakamura, T., J. Mater. Sci. Lett. 6, 331 (1987).CrossRefGoogle Scholar
6Hwan, L., Willis, W. S., Suib, S. L., and Galasso, F., Adv. Ceram. Mater. 3 (6), 584 (1988).CrossRefGoogle Scholar
7Naslain, R. and Langlais, F., Materials Science Research 20, 145 (1986).Google Scholar
8Fitzer, E., Fritz, W., and Gadow, R., Proc. Symp. Adv. Ceramic Materials, Tokyo (1983).Google Scholar
9Rossignol, J. Y., Langlais, F., and Naslain, R., Proc. 9th Int. Conf. Chemical Vapor Deposition (Electrochemical Society, Pennington, NJ, 1984), p. 586.Google Scholar
10Starr, T. L., Ceram. Eng. Sci. Proc. 8 (7–8), 951 (1987).CrossRefGoogle Scholar
11Gupte, S. M. and Tsamopoulos, J. A., J. Electrochem. Soc. 136 (2), 555 (1989).CrossRefGoogle Scholar
12Gupte, S. M. and Tsamopoulos, J. A., J. Electrochem. Soc. 137 (5), 1626 (1990).CrossRefGoogle Scholar
13Middleman, S., J. Mater. Res. 4, 1515 (1989).CrossRefGoogle Scholar
14Tai, N-H. and Chou, T-W., J. Am. Ceram. Soc. 72 (3), 414 (1989).CrossRefGoogle Scholar
15Evans, J. W. and Gupta, D., in Microwave Processing of Materials II, edited by Snyder, W. B., Sutton, W. H., Johnson, D. L., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 189, Pittsburgh, PA, 1990).Google Scholar
16Mack, J., Materials Edge, No. 8, 26 (1988).Google Scholar
17Stinton, D. P., Proc. 10th Inf. Conf. CVD (Electrochemical Society, Pennington, NJ, 1987), p. 1028.Google Scholar
18Sugiyama, K. and Yamamoto, E., ibid., p. 1041.Google Scholar
19Melkote, R. R. and Jensen, K. F., AIChE J. 35 (12), 1942 (1989).CrossRefGoogle Scholar
20Meek, T. T., Holcombe, C. E., and Dykes, N., J. Mater. Sci. Lett. 6 (9), 1060 (1987).CrossRefGoogle Scholar
21Alliouat, M., Mazo, L., Desgardin, G., and Raveau, B., Mater. Lett. 5 (9), 328 (1987).CrossRefGoogle Scholar
22Walkiewicz, J. W., Kazonich, G., and McGill, S. L., Minerals and Metallurgical Processing 5 (1), 39 (1988).Google Scholar
23Katz, J. D., Blake, R. D., Petrovic, J. J., and Sheinberg, H., in Microwave Processing of Materials, edited by Brooks, M. H., Chabinsky, I. J., and Sutton, W. H. (Mater. Res. Soc. Symp. Proc. 124, Pittsburgh, PA, 1988), p. 219.Google Scholar
24Katz, J. D., Blake, R. D., and Petrovic, J. J., Ceram. Eng. Sci. Proc. 9 (7–8) (1988), 12th Annual Conf. Composites and Advanced Ceramics, Cocoa Beach, FL, Jan. 17–20,1988, Los Alamos National Laboratory Paper No. LA-UR-88–597, p. 275.Google Scholar
25Katz, J. D., Blake, R. D., and Scherer, C. P., Ceram. Eng. Sci. Proc. 10 (7–10) (1989), 13th Annual Conf. Composites and Advanced Ceramics, Cocoa Beach, FL, Jan. 15–18, 1989, Los Alamos National Laboratory Paper No. LA-;UR-89–533.Google Scholar
26Sutton, W. H., Ceram. Bull. 68 (2), 376 (1989).Google Scholar
27Watters, D. G., Brodwin, M. E., and Kriegsman, G. A., in Microwave Processing of Materials, edited by Brooks, M. H., Chabinsky, I. J., and Sutton, W. H. (Mater. Res. Soc. Symp. Proc.124, Pittsburgh, PA, 1988), p. 219.Google Scholar
28Nakano, Y. and Evans, J. W., J. Chem. Phys. 78 (5), 258 (1983).CrossRefGoogle Scholar