Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-26T23:20:53.619Z Has data issue: false hasContentIssue false

Mg–Ti based materials for electrochemical hydrogen storage

Published online by Cambridge University Press:  31 January 2011

W.P. Kalisvaart*
Affiliation:
Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
H.J. Wondergem
Affiliation:
Philips Research Materials Analysis, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
F. Bakker
Affiliation:
Philips Research Materials Analysis, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
P.H.L. Notten
Affiliation:
Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands; and Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
*
a)Address all correspondence to this author. e-mail: w.p.kalisvaart@tue.nl
Get access

Abstract

Results of the mechanical alloying of binary Mg–Ti and ternary Mg–Ti–Ni mixtures using two different process control agents are reported. Both high- and low-energy milling resulted in the formation of cubic compounds. When all starting reactants had disappeared, a mixture of two face-centered cubic (fcc) phases was formed with lattice constants around 4.40 and 4.25 Å. The electrochemical hydrogen storage capacity, 450 mAh/g for (Mg0.65Ti0.35)0.95Ni0.05, was about one-third that reported for Mg–Ti thin films. This suggested that only one of the two fcc phases was active at ambient conditions. Prolonged mechanical alloying of (Mg0.60Ti0.40)0.95Ni0.05resulted in full conversion of the material into one fcc-phase with a very small crystallite size, an intermediate lattice constant (4.33 Å), and a sharply decreased storage capacity.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schlapbach, L.Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 2001CrossRefGoogle ScholarPubMed
2Tarascon, J.M.Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 2001CrossRefGoogle ScholarPubMed
3Notten, P.H.L.: Interstitial Intermetallic Alloys in NATO ASI Series E, edited by F. Grandjean, G.J. Long, and K.H.J. Buschow, Vol. 281Chap. 7, p. 151 1995Google Scholar
4Senoh, H., Morimoto, K., Inoue, H., Iwakura, C.Notten, P.H.L.: Relationship between equilibrium hydrogen pressure and exchange current for the hydrogen electrode reaction at MmNi3.9–xMn0.4AlxCo0.7alloy electrodes. J. Electrochem. Soc. 147, 2451 2000CrossRefGoogle Scholar
5Willems, J.J.G.: Metal hydride electrodes stability of LaNi5-related components. Philips J. Res. (Suppl. 39), 1 1984Google Scholar
6Zaluska, A., Zaluski, L.Olsen, J.O. Ström: Nanocrystalline magnesium for hydrogen storage. J. Alloys Comp. 288, 217 1999CrossRefGoogle Scholar
7Notten, P.H.L., Ouwerkerk, M., van Hal, H., Beelen, D., Keur, W., Zhou, J.Feil, H.: High energy density strategies: From hydride-forming materials research to battery integration. J. Power Sources 129, 45 2004CrossRefGoogle Scholar
8Kalisvaart, W.P., Niessen, R.A.H.Notten, P.H.L.: Electrochemical hydrogen storage in MgSc alloys: A comparative study between thin films and bulk materials. J. Alloys Compd. 417, 280 2006CrossRefGoogle Scholar
9Conradi, M.S., Mendenhall, M.P., Ivancic, T.M., Carl, E.A., Browning, C.D., Notten, P.H.L., Kalisvaart, W.P., Magusin, P.C.M.M., Bowman, R.C. Jr., Hwang, S-J.Adolphi, N.L.: NMR to determine rates of motion and structures in Metal-Hydrides. J. Alloys Compd.(2007, in press)Google Scholar
10Niessen, R.A.H.Notten, P.H.L.: Electrochemical hydrogen storage characteristics of thin film MgX (X=Sc, Ti, V, Cr) compounds . Electrochem. Solid-State Lett. 8, A534 2005Google Scholar
11Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 2001and references thereinCrossRefGoogle Scholar
12Sun, F.Froes, F.H.: Synthesis and characterization of mechanical-alloyed Ti– xMg alloys.J. Alloys Compd. 340, 220 2002Google Scholar
13Liang, G.Schulz, R.: Synthesis of Mg–Ti alloy by mechanical alloying. J. Mater. Sci. 38, 1179 2003CrossRefGoogle Scholar
14Kyoi, D., Sato, T., Rönnebro, E., Kitamura, N., Ueda, A., Ito, M., Katsuyama, S., Hara, S., Noréus, D.Sakai, T.: A new ternary magnesium–titanium hydride Mg7TiHxwith hydrogen desorption properties better than both binary magnesium and titanium hydrides. J. Alloys Compd. 372, 213 2004CrossRefGoogle Scholar
15Vermeulen, P., Niessen, R.A.H.Notten, P.H.L.: Hydrogen storage in metastable MgyTi(1−y)thin films. Electrochem. Comm. 8, 27 2005CrossRefGoogle Scholar
16Niessen, R.A.H.Notten, P.H.L.: The influence of O2on the electrochemistry of thin film, hydrogen storage, electrodes. Electrochim. Acta. 50, 2959 2005CrossRefGoogle Scholar
17Han, S.C., Lee, P.S., Lee, J.Y., Züttel, A.Schlapbach, L.: Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling. J. Alloys Compd. 306, 219 2000CrossRefGoogle Scholar
18Zhou, E., Suryanarayana, C.Froes, F.H.: Effect of premilling elemental powders on solid solubility extension of magnesium in titanium by mechanical alloying. Mater. Lett. 23, 27 1995CrossRefGoogle Scholar
19Alonso, T., Liu, Y., Parks, T.C.McCormick, P.G.: Synthesis of the high pressure FCC phase in lanthanide metals by mechanical milling. Scripta Metall. Mater. 25, 1607 1991CrossRefGoogle Scholar
20Alonso, T., Liu, Y., Parks, T.C.McCormick, P.G.: Correction to ‘Synthesis of the high pressure FCC phase in lanthanide metals by mechanical milling’. Scripta Metall. Mater. 26, 1931 1992CrossRefGoogle Scholar
21Murty, B.S.Hono, K.: Formation of nanocrystalline particles in glassy matrix in melt-spun Mg–Cu–Y based alloys. Mater. Trans. 41, 1538 2000CrossRefGoogle Scholar
22Deegan, R.A.: On the structure of the transition metals. J. Phys. C 1, 763 1968CrossRefGoogle Scholar
23Dalton, N.W.Deegan, R.A.: On the structure of the transition metals II. Computed densities of states. J. Phys. C 2, 2369 1969CrossRefGoogle Scholar
24Skriver, H.L.: Crystal structure from one-electron theory. Phys. Rev. B 31, 1909 1985CrossRefGoogle ScholarPubMed
25Rongeat, C., Grosjean, M.H., Ruggeri, S., Dehmas, M., Bourlot, S., Marcotte, S.Roué, L.: Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries. J. Power Sources 158, 747 2006CrossRefGoogle Scholar
26Rongeat, C.Roué, L.: Synergetic effect between Ti and Al on the cycling stability of MgNi-based Metal Hydride electrodes. J. Electrochem. Soc. 152, A1354 2005CrossRefGoogle Scholar
27Rongeat, C.Roué, L.: Effect of particle size on the electrode performance of MgNi hydrogen storage alloy. J. Power Sources 132, 302 2004CrossRefGoogle Scholar
28Ruggeri, S.Roué, L.: Correlation between charge input and cycle life of MgNi electrode for Ni-MH batteries. J. Power Sources 117, 260 2003CrossRefGoogle Scholar