Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T08:14:35.782Z Has data issue: false hasContentIssue false

A micromechanistic model of the combustion synthesis process: Part II. Numerical simulation

Published online by Cambridge University Press:  03 March 2011

Yangsheng Zhang
Affiliation:
School of Ceramic Engineering and Science, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Gregory C. Stangle
Affiliation:
School of Ceramic Engineering and Science, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Get access

Abstract

A series of computer experiments was conducted for the self-propagating combustion synthesis process in the Nb-C system, based on the general theoretical model that was developed previously.1 A detailed and quantitative description was given for the various physical and chemical processes that take place during the combustion synthesis process. The results are presented at various length scales in order to provide an insight into understanding the mechanisms that are responsible for the self-propagating behavior. It was shown that a fundamental understanding and precise control of the process require a strong emphasis on the joint contributions of the rates of the various mass and energy redistribution processes that occur during the combustion synthesis process. A proper balance of each of the elementary process rates must be achieved to give rise to self-propagating behavior. This paper illustrates some of the capabilities of the general theoretical model in quantitatively describing the self-propagating combustion synthesis process.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 25922604 (1994).CrossRefGoogle Scholar
2Pampuch, R., Lis, J., Piekarczyk, J., and Stobierski, L., J. Mater. Syn. Proc. 1, 93100 (1993).Google Scholar
3Wada, H. and Odawara, O., J. Mater. Syn. Proc. 1, 121124 (1993).Google Scholar
4Coy, M. A., M. S. Thesis, Alfred University, Alfred, NY (1993).Google Scholar
5Vecchio, K. S., LaSalvia, J. C., Meyers, M. A., and Gray, G. T. III, Metall. Trans. A 23, 8797 (1992).CrossRefGoogle Scholar
6Rabin, B. H., Korth, G. E., and Williamson, R. L., J. Am. Ceram. Soc. 73 (7), 21562157 (1990).CrossRefGoogle Scholar
7Bhattacharya, A. K., J. Am. Ceram. Soc. 75, 16781681 (1992).CrossRefGoogle Scholar
8Lebrat, J-P., Varma, A., and Miller, A. E., Metall. Trans. A 23, 6976 (1992).CrossRefGoogle Scholar
9Rabin, B. H. and Wright, R. N., Metall. Trans. A 23, 3540 (1992).CrossRefGoogle Scholar
10Yi, H. C., Moore, J. J., and Petric, A., Metall. Trans. A 23, 5964 (1992).CrossRefGoogle Scholar
11Matson, D. M. and Munir, Z. A., Mater. Sci. Eng. A153, 700705 (1992).CrossRefGoogle Scholar
12Low, I. M., J. Mater. Sci. Lett. 11, 715718 (1992).CrossRefGoogle Scholar
13Krueger, B. R., Mutz, A. H., and Vreeland, T. Jr., Metall. Trans. A 23, 5558 (1992).CrossRefGoogle Scholar
14Deevi, S. C., Mater. Sci. Eng. A149, 241251 (1992).CrossRefGoogle Scholar
15Varma, A. and Lebrat, J. P., Chem. Eng. Sci. 47, 21792194 (1992).CrossRefGoogle Scholar
16Combustion andPlasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990).Google Scholar
17Merzhanov, A. G., a Keynote Talk presented at Int. Symp. on Combustion and Plasma Synthesis of High-Temperature Materials, San Francisco, CA, Oct. 23–26 (1988).Google Scholar
18Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 279365 (1989).CrossRefGoogle Scholar
19Rice, R. W., Richardson, G. Y., Kunetz, J. M., Schroeter, T., and McDonough, W.J., Ceram. Eng. Sci. Proc. 7, 736750 (1986).Google Scholar
20Zhou, Z. and Stangle, G. C., J. Mater. Sci. (1994, in press).Google Scholar
21Dunmead, S. D., Ready, D. W., Semler, C. E., and Holt, J. B., J. Am. Ceram. Soc. 72, 23182324 (1989).CrossRefGoogle Scholar
22Munir, Z. A., Metall. Trans. A 23, 713 (1992).CrossRefGoogle Scholar
23Hardt, A. P. and Phung, P. V., Combust. Flame 21, 7789 (1973).CrossRefGoogle Scholar
24Margolis, S. B., Prog. Energy Combust. Sci. 17, 135162 (1991).CrossRefGoogle Scholar
25Puszynski, J., Degreve, J., and Hlavacek, V., Ind. Eng. Chem. Res. 26, 14241434 (1987).CrossRefGoogle Scholar
26Behrens, R. G. and Hansen, G. P., in Materials Processing by Self-Propagating High-Temperature Synthesis, edited by Gabriel, K. A., Wax, S. G., and McCauley, J. W., Materials Technology Laboratory Report MTL SP 87–3 (1987).Google Scholar
27Lakshmikantha, M. G., Bhattacharya, A. K., and Sekhar, J. A., Metall. Trans. A 23, 2334 (1992).CrossRefGoogle Scholar
28Bhattacharya, A. K., Ceram. Eng. Sci. Proc. 12 (9–10), 16971722 (1991).CrossRefGoogle Scholar
29Dunmead, S. D., Munir, Z. A., and Holt, J. B., J. Am. Ceram. Soc. 75, 175179 (1992).CrossRefGoogle Scholar
30Advani, A. H., Thadhani, N. N., Grebe, H. A., Heaps, R., Coffin, C., and Kottke, T., J. Mater. Sci. 27, 33093317 (1992).CrossRefGoogle Scholar
31Bhattacharya, A. K., J. Mater. Sci. 27, 30503061 (1992).CrossRefGoogle Scholar
32Lakshmikantha, M. G. and Sekhar, J. A., Metall. Trans. A 24, 617628 (1993).CrossRefGoogle Scholar
33Varma, A., Cao, G., and Morbidell, M., AIChE J. 36, 10321038 (1990).CrossRefGoogle Scholar
34Puszynski, J., Kumar, S., Dimitriou, P., and Hlavacek, V., Z. Naturforsch. 43a, 10171025 (1988).CrossRefGoogle Scholar
35Dimitriou, P., Puszynski, J., and Hlavacek, V., Combust. Sci. Technol. 68, 101111 (1989).CrossRefGoogle Scholar
36Margolis, S. B., Metall. Trans. A 23, 1522 (1992).CrossRefGoogle Scholar
37Bayliss, A. and Matkowsky, B. J., SIAM J. Appl. Math. 50, 437459 (1990).CrossRefGoogle Scholar
38Merzhanov, A. G. and Khaikin, B. I., Prog. Energy Combust. Sci. 14, 198 (1988).CrossRefGoogle Scholar
39He, C., Ph.D. Dissertation, Alfred University, Alfred, NY (in progress).Google Scholar
40Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
41Zhang, Y. and Stangle, G. C., unpublished research.Google Scholar
42Batchelor, G. K. and O'Brien, R. W., Proc. R. Soc. London A 355, 313333 (1977).Google Scholar
43Ridgeway, K. and Tarbuk, K. J., Br. Chem. Eng. 12, 384388 (1967).Google Scholar
44Viskanta, R. and Anderson, E. E., Adv. Heat Transfer 11, 317441 (1975).CrossRefGoogle Scholar
45Goedecke, G. H., J. Opt. Soc. Am. 67, 13391348 (1977).CrossRefGoogle Scholar
46Wang, K. Y. and Tien, C. L., J. Quant. Spectres. Radiat. Transfer 30, 213223 (1983).CrossRefGoogle Scholar
47Drolen, B. L. and Tien, C. L., J. Thermophysics 1, 6368 (1987).CrossRefGoogle Scholar
48Flamant, G., Menigault, T., and Schwander, D., J. Heat Transfer 110, 463467 (1988).CrossRefGoogle Scholar
49Viskanta, R. and Menguc, M. P., Appl. Mech. Rev. 42, 241259 (1989).CrossRefGoogle Scholar
50Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure (Academic Press, New York, 1979).Google Scholar
51Scheidegger, A. E., The Physics of Flow through Porous Media, 3rd ed. (University of Toronto Press, Toronto, 1974).Google Scholar
52Cussler, E. L., Mass Transfer (McGraw-Hill, New York, 1988).Google Scholar
53Zhang, Y. and Stangle, G. C., unpublished research.Google Scholar
54Modell, M. and Reid, R. C., Thermodynamics and Its Applications (Prentice-Hall, Englewood Cliffs, NJ, 1974).Google Scholar
55Carnahan, B., Luther, H. A., and Wilkes, J. O., Applied Numerical Methods (John Wiley & Sons, New York, 1969).Google Scholar
56Geiger, G. H. and Poirier, D. P., Transport Phenomena in Metallurgy (Addison-Wesley, Reading, MA, 1973).Google Scholar
57Zhang, Y. and Stangle, G. C., unpublished research.Google Scholar
58Crank, J., The Mathematics of Diffusion (Clarendon Press, Oxford, 1956).Google Scholar
59Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions (NBS Applied Mathematics Series, 1964), Vol. 55.Google Scholar