Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T11:58:48.117Z Has data issue: false hasContentIssue false

Microstructure development of sol-gel derived epitaxial LiNbO3 thin films

Published online by Cambridge University Press:  03 March 2011

Keiichi Nashimoto*
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Michael J. Cima
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Paul C. McIntyre
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Wendell E. Rhine
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Present Address: Fuji Xerox Co., Ltd., 3-3-5, Akasaka, Tokyo, Japan.
Get access

Abstract

Film growth and microstructural evolution were investigated for sol-gel derived LiNbO3 thin films deposited on lattice-matched single-crystal substrates. Epitaxial LiNbO3 films of about 100 nm nominal thickness were prepared by spin coating a solution of the lithium niobium ethoxide on sapphire (0001) substrates and annealing at 400 °C or 700 °C in a humidified oxygen atmosphere. These films exhibited an epitaxial relationship with the substrate of the type LiNbO3 (0001) || α-Al2O3 (0001) and LiNbO3 [100] || α-Al2O3 [100] as determined by x-ray pole figure analysis. Transmission electron microscopy indicated the epitaxial films annealed at 400 °C consisted of slightly misoriented ∼5 nm subgrains and of numerous ∼10 nm enclosed pores. The microstructure and orientation development of these films was consistent with a heteroepitaxial nucleation and growth mechanism, in which epitaxial nuclei form at the substrate surface and grow upward into an amorphous and porous intermediate film: Epitaxial films annealed at 700 °C contained larger 150-200 nm subgrains and pinholes. Misorientations between adjacent subgrains appeared to be significantly smaller in films annealed at 700 °C than those in films annealed at 400 °C. Hydrolysis of the alkoxide precursor solution prior to spin coating promoted the development of polycrystalline films on single-crystal sapphire substrates. Infrared spectra and thermal analysis indicated that, independent of the degree of the solution hydrolysis, nucleation of LiNbO3 was immediately preceded by decomposition of an amorphous carbonate intermediate phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Abouelleil, M. M. and Leonberger, F. J., J. Am. Ceram. Soc. 72, 1311 (1989).CrossRefGoogle Scholar
2Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
3Kondo, S., Miyazawa, S., Fushimi, S., and Sugii, K., Appl. Phys. Lett. 26, 489 (1975).CrossRefGoogle Scholar
4Miyazawa, S., Appl. Phys. Lett. 23, 198 (1973).CrossRefGoogle Scholar
5Fushimi, S. and Sugii, K., Jpn. J. Appl. Phys. 13, 1895 (1974).CrossRefGoogle Scholar
6Takada, S., Ohnishi, M., Hayakawa, H., and Mikoshiba, N., Appl. Phys. Lett. 24, 490 (1974).CrossRefGoogle Scholar
7Hewig, G. H., Jain, K., Sequeda, F. O., Tom, R., and Wang, P., Thin Solid Films 88, 67 (1982).CrossRefGoogle Scholar
8Betts, R. A. and Pitt, C. W., Electron. Lett. 21, 960 (1985).CrossRefGoogle Scholar
9Fukushima, J., Kodaira, K., and Matsushita, T., Am. Ceram. Soc. Bull. 55, 1064 (1976).Google Scholar
10Tuchiya, T., Kawano, T., Sei, T., and Hatano, J., J. Ceram. Soc. Jpn. 98, 743 (1990).CrossRefGoogle Scholar
11Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Soc. Proc. 36, 107 (1985).Google Scholar
12Suzuki, T., Matsuki, M., Matsuda, Y., Kobayashi, K., and Takahasi, Y., J. Ceram. Soc. Jpn. 98, 754 (1990).CrossRefGoogle Scholar
13Quek, H. M., and Yan, M. F., Ferroelectrics 74, 95 (1987).CrossRefGoogle Scholar
14Braunstein, G., Raz-Pujalt, G. R., Mason, M. G., Blanton, T., Barnes, C. L., and Margevich, D., J. Appl. Phys. 73, 961 (1993).CrossRefGoogle Scholar
15Miller, K. T. and Lange, F. F., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), p. 191.Google Scholar
16Eichorst, D. J. and Payne, D. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 19.Google Scholar
17Yanovskaya, M. I., Turevskaya, E. P., Leonov, A. P., Ivanov, S. A., Kolganova, N. V., Stefanovich, S.Yu., Turova, N. Ya., and Venevtsev, Yu.N., J. Mater. Sci. 23, 395 (1988).CrossRefGoogle Scholar
18Hirano, S. and Kato, K., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), p. 181.Google Scholar
19Hirano, S. and Kato, K., Adv. Ceram. Mater. 3, 503 (1988).CrossRefGoogle Scholar
20Partlow, D. P. and Greggi, J., J. Mater. Res. 2, 595 (1987).CrossRefGoogle Scholar
21Hirano, S., Kikuta, K., and Kato, K., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 3.Google Scholar
22Joshi, V. and Mecartney, M. L., J. Mater. Res. 8, 2668 (1993).CrossRefGoogle Scholar
23Nashimoto, K. and Cima, M. J., Mater. Lett. 10, 348 (1991).CrossRefGoogle Scholar
24Nashimoto, K., Cima, M. J., and Rhine, W. E., in Evolution of Thin Film and Surface Microstructure, edited by Thompson, C. V., Tsao, J. Y., and Srolovitz, D.J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991), p. 439.Google Scholar
25Nashimoto, K., Cima, M. J., and Rhine, W. E., in Ferroelectric Thin Films, Ceramic Transactions 25, 371 (1992).Google Scholar
26Hirano, S. and Kato, K., Adv. Ceram. Mater. 2, 142 (1987).CrossRefGoogle Scholar
27Eichorst, D. J., Howard, K. E., and Payne, D.A., in Ultrastructure Processing of Glasses and Composites, edited by Uhlmann, D. R., Weinberg, M. C., Risbud, S. H., and Ulrich, D. R. (John Wiley & Sons, New York, 1992), p. 87.Google Scholar
28Bennedict, J. P., Anderson, R., Klepeis, S. J., and Chaker, M., in Specimen Preparation for Transmission Electron Microscopy of Materials II, edited by Anderson, R. (Mater. Res. Soc. Symp. Proc. 199, Pittsburgh, PA, 1990), p. 189.Google Scholar
29Joshi, V., Goo, G. K., and Mecartney, M.L., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W. E., Shaw, T. M., Gottschall, R. J., and Chen, Y. (Mater. Res. Soc. Symp. Proc. 249, Pittsburgh, PA, 1992), p. 459.Google Scholar
30Amini, M. and Sacks, M. D., in Better Ceramics Through Chemistry IV, edited by Zelinsky, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 675.Google Scholar
31Chen, C., Ryder, D. F. Jr., and Spurgeon, W. A., J. Am. Ceram. Soc. 72, 1495 (1989).CrossRefGoogle Scholar
32Nashimoto, K., Ceramics Processing Research Laboratory Report R20 (Materials Processing Center, M.I.T., 1990), p. 7-1.Google Scholar
33Hsueh, C. and Mecartney, M. L., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 219.Google Scholar
34Norton, M. G. and Carter, C. B., Scanning Microscopy 6, 385398 (1992).Google Scholar
35Miller, K. T., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar