Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T08:16:04.473Z Has data issue: false hasContentIssue false

A model of diffusion/viscous mass transport in silicates during liquid-phase sintering

Published online by Cambridge University Press:  03 March 2011

J.W. Nowok
Affiliation:
Fuels and Materials Science, University of North Dakota, Energy and Environmental Research Center, Box 8213, University Station, Grand Forks, North Dakota 58202
Get access

Abstract

The model of capillary transport of liquid metals driven by shear stress resulting from the displacement of menisci [J.W. Nowok, Scripta Metal]. Mater. 29, 931 (1993); Acta Metall. Mater. 42, 4025 (1994)] is applicable to liquid-phase sintering of silicate/aluminosilicate glasses. The movement of a liquid phase between adjacent particles is compared with that in capillaries. It appears that the transport property of intergranular melt may be expressed by the viscosity (η) and volume diffusion (D) parameters if mean displacement of menisci is compared with the mean diffusive jump lengths of atoms/molecules (L). This leads to the following relation: (γ/η)Lα = Dcap, where α and Dcap are a specific permeability and volume diffusion coefficient. The use of this model requires the assumption that the diffusing species are also the viscous flow units, and they can be either atoms or structural units. This assumption seems to be applicable for depolymerized silicate melts if the dominant mass transport is initiated by the diffusion of both nonbridging oxygen and silicon atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nowok, J. W., Scripta Metall. Mater. 29, 931 (1993).CrossRefGoogle Scholar
2Nowok, J. W., Acta Metall. Mater. 42, 4025 (1994).CrossRefGoogle Scholar
3Kwon, O-H., in Ceramic and Glasses, edited by Schneider, S. J. Jr. (ASM INTERNATIONAL, Materials Park, OH, 1991), Vol. 4, p. 285.Google Scholar
4Nowok, J. W., Benson, S. A., Jones, M. L., and Kalmanovitch, D. P., Fuel 69, 1020 (1990).CrossRefGoogle Scholar
5Cooper, R. F., J. Geophys. Res. 95, 6979 (1990).CrossRefGoogle Scholar
6Navrotsky, A., Geisenger, K. L., McMillan, P., and Gibbs, G. V., Phys. Chem. Minerals 11, 284 (1985).CrossRefGoogle Scholar
7Mott, N. F., Philos. Mag. B56, 257 (1987).CrossRefGoogle Scholar
8Ferrari, L., Mott, N. F., and Russo, G., Philos. Mag. 59, 263 (1989).CrossRefGoogle Scholar
9Liu, S. B., Stebbins, J. E., Schneider, E., and Pines, A., Geochim. Cosmochim. Acta 52, 527 (1988).CrossRefGoogle Scholar
10Dunn, T., Geochim. Cosmochim. Acta 46, 2293 (1982).CrossRefGoogle Scholar
11Dunn, T., in Silicate Melts, edited by Scarfe, C. M., Short Course Handbook, May 1986 (Mineralogical Association of Canada, 1986), Vol. 12, p. 57.Google Scholar
12Schaffer, H. A., J. Non-Cryst. Solids 67, 19 (1984).CrossRefGoogle Scholar
13Lange, F. F., J. Am. Ceram. Soc. 65, C-33 (1982).Google Scholar
14Smolej, V., J. Am. Ceram. Soc. 66, C-33 (1983).CrossRefGoogle Scholar
15German, R. M., J. Am. Ceram. Soc. 69, C-40 (1986).CrossRefGoogle Scholar
16Chaki, T. K., Philos. Mag. 62, 465 (1990).CrossRefGoogle Scholar
17Nowok, J. W., Benson, S. A., Steadman, E. N., and Brekke, D. W., Fuel 72, 1055 (1993).CrossRefGoogle Scholar
18Cooper, R. F. and Kohlstedt, D. L., J. Geophys. 91, 9315 (1986).CrossRefGoogle Scholar
19Bansal, N. P. and Doremus, R. H., in Handbook of Glass Properties (Academic Press, Orlando, FL, 1986).Google Scholar
20Oishi, Y., Terai, R., and Ueda, H., in Mass Transport Phenomena in Ceramics, edited by Cooper, A. and Heuer, A. (Plenum Press, New York, 1975), p. 297.CrossRefGoogle Scholar
21Gupta, D., in Diffusion Phenomena in the Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P. S. (Noyes Publication, Park Ridge, NJ, 1988), p. 1.Google Scholar
22Sasabe, M. and Goto, K., Metall. Trans. 5, 2225 (1974).CrossRefGoogle Scholar
23Nowok, J. W., unpublished data.Google Scholar
24Frischat, G. H., Ionic Diffusion in Oxide Glasses (Trans Tech. Publ., Bay Village, OH, 1975), p. 136.Google Scholar
25Henderson, J., Yang, L., and Derge, G., Trans. Metall Soc. AIME 221, 56 (1961).Google Scholar
26Ryan, M. P. and Blevins, J. K., U. S. Geol. Survey Bull., 1764 (1987).Google Scholar
27Uchino, T., Sakka, T., Ogata, Y., and Iwasaki, M., J. Non-Cryst. Solids 146, 26 (1992).CrossRefGoogle Scholar