Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-12T21:13:48.223Z Has data issue: false hasContentIssue false

Modified resin–intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors

Published online by Cambridge University Press:  31 January 2011

Lone-Wen Tai
Affiliation:
Ceramic Engineering Department, University of Missouri–Rolla, Rolla, Missouri 65401
Paul A. Lessing
Affiliation:
Ceramics Section, EG&G Idaho, Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho 83415
Get access

Abstract

The formation of a polyester between citric acid (CA) and ethylene glycol (EG) was found to be a decisive factor for the foaming of resin intermediates in a Pechini-type powder process. This process was modified by changing the organic mass ratio of CA/EG which results in ceramic powders with different morphologies. The most porous resin intermediate (with or without chelated cations) was prepared using a polymeric gel made of equimolar citric acid and ethylene glycol. It was also found that a premixing of organic components, prior to adding constituent nitrate solutions, makes the whole process more controllable.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lessing, Paul A., Am. Ceram. Soc. Bull. 68 (5), 10021007 (1989).Google Scholar
2.Bowen, H. K. and Okamura, H., Ceram. Int. 12, 161171 (1986).Google Scholar
3.Kato, A., Industrial Ceram. 7 (2), 105108 (1987).Google Scholar
4.Hibbert, B. D., Lovegrove, J., and Tseung, A. C. C., J. Mater. Sci. 22, 37553761 (1987).CrossRefGoogle Scholar
5.Lange, F. F., J. Am. Ceram. Soc. 72 (1), 315.(1989).CrossRefGoogle Scholar
6.Ph. Colomban, Ceram. Int. 15, 2350 (1989).CrossRefGoogle Scholar
7.Phulé, P. P. and Risbud, S. H., Mater. Sci. Eng. B3, 241247 (1989).CrossRefGoogle Scholar
8.Pechiní, M. P., Pat, U. S.. No. 3 330697, (July 11, 1967).Google Scholar
9.Eror, N. G. and Anderson, H. U., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R.(Mater. Res. Soc. Symp. Proc. 73, lPittsburgh, PA, 1986), pp. 571577.Google Scholar
10.Tai, L-W. and Lessing, P. A., J. Am. Ceram. Soc. 74 (1), 155160 (1991).CrossRefGoogle Scholar
11.Anderson, H. U., Pennell, M. J., and Guha, J. P., Advances in Ceramics (Ceramic Powder Science, Vol. 21), edited by Messing, G. L., Mazdiyasni, K. S., McCauley, J. W., and Harber, R. A. (American Ceramic Society, Westerville, OH, 1987), pp. 9198.Google Scholar
12.Zhang, S. C., Messing, G. L., Huebner, W., and Coleman, M. M., J. Mater. Res. 5, 18061812 (1990).CrossRefGoogle Scholar
13.Marcilly, C., Ph. Courty, and Delmon, B., J. Am. Ceram. Soc. 53 (1), 5657 (1970).CrossRefGoogle Scholar
14. Ph. Courty, Ajot, H., Marcilly, C., and Delmon, B., Powder Technol. 7, 2138 (1973).Google Scholar
15.Baythoun, M. S. G. and Sale, F. R., J. Mater. Sci. 17, 27572769 (1982).CrossRefGoogle Scholar
16.Anderson, H. U., presented in 41st Pacific Coast Regional Meeting, American Ceramic Society, San Francisco, CA,October 2326, (1988) (Paper No. 4-FC-88P).Google Scholar
17.Tai, L-W., Thesis, M. S., New Mexico Institute of Mining and Technology, (July 1989).Google Scholar
18.Rosen, S. L., Fundamental Principles of Polymeric Materials (John Wiley & Sons, New York, 1982), pp. 103114.Google Scholar
19.Dictionary of Organic Compounds (Oxford University Press, New York, 1965), Vol. 2, p. 715.Google Scholar
20.Tuttle, B. A. and Voigt, J. A., Ceramic Powder Science II, edited by Messing, G. L., Fuller, E. R. Jr, and Hausner, H. (American Ceramic Society, Westerville, OH, 1988), pp. 6269.Google Scholar