Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T07:31:36.725Z Has data issue: false hasContentIssue false

Monolithic nanocrystalline Au fabricated by the compaction of nanoscale foam

Published online by Cambridge University Press:  01 March 2005

A.M. Hodge*
Affiliation:
Nanoscale Synthesis and Characterization Laboratory, Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
J. Biener
Affiliation:
Nanoscale Synthesis and Characterization Laboratory, Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
L.L. Hsiung
Affiliation:
Nanoscale Synthesis and Characterization Laboratory, Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Y.M. Wang
Affiliation:
Nanoscale Synthesis and Characterization Laboratory, Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
A.V. Hamza
Affiliation:
Nanoscale Synthesis and Characterization Laboratory, Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
J.H. Satcher Jr.
Affiliation:
Nanoscale Synthesis and Characterization Laboratory, Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
*
a)Address all correspondence to this author. e-mail: hodge4@llnl.gov
Get access

Abstract

We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam was synthesized by electrochemically driven dealloying. The resulting Au foams exhibited porosities of ∼60% with pore sizes of 40 and 100 nm and a typical grain size of <50 nm. Second, the nanoporous foams were fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by transmission electron microscopy and x-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibited an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which were up to 4.5 times higher than the hardness values obtained from polycrystalline Au.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H.: Nanostrcuture materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2002).CrossRefGoogle Scholar
2.Kumar, K.S., Van Swygenhoven, H. and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
3.Ebrahimi, F., Zhai, Q. and Kong, D.: Deformation and fracture of electrodeposited copper. Scripta Mater. 39, 315 (1998).CrossRefGoogle Scholar
4.Schuh, C.A., Nieh, T.G. and Yamasaki, T.: Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scripta Mater. 46, 735 (2002).CrossRefGoogle Scholar
5.Sanders, P.G., Eastman, J.A. and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
6.Okuda, S. and Tang, F.: Thermal stability of nanocrystalline gold prepared by gas deposition method. Nanostruct. Mater. 6, 585 (1995).CrossRefGoogle Scholar
7.Tanimoto, H., Fujita, H., Mizubayashi, H., Sasaki, Y., Kita, E. and Okuda, S.: AFM observation of nanocrystalline Au prepared by a gas deposition method. Mater. Sci. Eng. 217, 108 (1996).CrossRefGoogle Scholar
8.Tanimoto, H., Koda, Y., Sakai, Y., Mizubayashi, H. and Kita, E.: Nanostructure and thermal stability of Au film prepared by sputtering technique. Scripta Mater. 44, 2231 (2001).CrossRefGoogle Scholar
9.Sakai, Y., Tanimoto, H. and Mizubayashi, H.: Mechanical behavior of high density nanocrystalline gold prepared by gas deposition. Acta Mater. 47, 211 (1999).CrossRefGoogle Scholar
10.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N. and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).CrossRefGoogle ScholarPubMed
11.Sieradzki, K., Dimitrov, N., Movrin, D., McCall, C., Vasijevic, N. and Erlebacher, J.: The dealloying critical potential. J. Electrochem. Soc. 149, B370 (2002).CrossRefGoogle Scholar
12.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M. and Satcher, J.H.: Nanoporous Au—A high yield strength material. J. Appl. Phys. 97, 024301 (2005).CrossRefGoogle Scholar
13.Ding, Y., Kim, Y-J. and Erlebacher, J.: Nanoporous gold leaf—Ancient technology/advanced material. Adv. Mater. 16, 1897 (2004).CrossRefGoogle Scholar
14.Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structures and Properties, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1997).CrossRefGoogle Scholar
15.Lee, G.H., Rhee, C.K., Lee, M.K., Kim, W.W. and Ivanov, V.V.: Nanostructures and mechanical properties of coper compacts prepared by magnetic pulsed compaction method. Mater. Sci. Eng. 375–377A, 604 (2004).CrossRefGoogle Scholar
16.Nieh, T.G., Luo, P., Nellis, W., Lesuer, D. and Benson, D.: Dynamic compaction of aluminum nanocrystals. Acta Mater. 44, 3781 (1996).CrossRefGoogle Scholar
17.Li, R. and Sieradzki, K.: Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168 (1992).CrossRefGoogle ScholarPubMed
18.Metals Handbook, edited by Davies, J.R. (ASM International, Materials Park, OH, 1998), p. 626.Google Scholar
19.Kiely, J.D. and Houston, J.E.: Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588 (1998).CrossRefGoogle Scholar
20.Beake, B.D. and Smith, J.F.: High temperature nanoindentation testing on fused silica and other materials. Philos. Mag. A 82, 2179 (2002).CrossRefGoogle Scholar