Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-12T21:18:31.315Z Has data issue: false hasContentIssue false

Morphological instabilities in the low pressure synthesis of diamond

Published online by Cambridge University Press:  31 January 2011

K.V. Ravi
Affiliation:
Lockheed Missiles and Space Company, Inc., Research and Development Division, 3251 Hanover Street, Palo Alto, California 94304-1191
Get access

Abstract

Morphological instabilities attending the high growth rate of diamond films are examined. Pertinent literature on morphological instabilities and microstructure evolution in vapor deposited films is reviewed and theoretical treatments related to the case of diamond growth are discussed. Diamond films of various thicknesses have been synthesized utilizing the combustion flame synthesis technique involving diamond growth rates of ∼1 μm/min. Films of thicknesses under 20 μm are found to be dense and the surface smoothness of such films is governed by facets on the individual crystallites that make up the film. Increasing film thicknesses, at high growth rates, results in extremely rough surfaces, the trapping of voids and discontinuities, and the incorporation of non-diamond phases in the growing film. These characteristics are typical of morphological instabilities when surface diffusion and re-evaporation processes are absent and instability is promoted by the high rate arrival of the appropriate species from the flame ambient to the surface. Factors contributing to morphological instabilities include competitive shadowing and nutrient starvation and growth anisotropy of the different crystallographic faces on individual diamond crystals. It is shown that surface temperature and the presence of oxidizing species in the flame ambient contribute to anisotropic growth of diamond crystals and hence to morphological instabilities in diamond films. An approach to avoiding these instabilities is briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
2.Peters, M., Pinneo, J. M., Piano, L. S., Ravi, K. V., Versteeg, V., and Yokota, S., SPIE Proceedings 877, 79 (1988).CrossRefGoogle Scholar
3.Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183.1 (1982).Google Scholar
4.Ohtake, N., Tokura, H., Kuriyama, Y., Mashimo, Y., and Yoshikawa, M., Proc. 1st Int. Symp. on Diamond and Diamond Like-Films, The Electrochemical Society, 93 (1989).Google Scholar
5.Hirose, Y., Amanuma, S., Okada, N., and Komaki, K., Proc. 1st Int. Symp. on Diamond and Diamond-Like Films, The Electrochemical Society, 80 (1989).Google Scholar
6.Ravi, K. V., Joshi, A., and Hu, H. S., Proc. 2nd Int. Conf. on The New Diamond Science and Technology, Washington, DC, 391 (1990).Google Scholar
7.Schaefer, D. W., Science 243, 1023 (1989).CrossRefGoogle Scholar
8.van den Brekel, C. H. J. and Jansen, A. K., J. Cryst. Growth 43, 364 (1978).CrossRefGoogle Scholar
9.Palmer, B. J. and Gordon, R. G., Thin Solid Films 158, 313 (1988).CrossRefGoogle Scholar
10.Mullins, J. W., J. Appl. Phys. 28, 333 (1957).CrossRefGoogle Scholar
11.Bernholc, J., Antonelle, A., and Pantelides, S. T., SDIO/IST Diamond Technology Initiative Symposium, Arlingtpn, VA (July 1988).Google Scholar
12.Siethoff, H. and Schroeter, W., Philos. Mag. A 37, 711 (1978).CrossRefGoogle Scholar
13.Fairfield, J. M. and Masters, B. J., J. Appl. Phys. 38, 3184 (1967).CrossRefGoogle Scholar
14.Watkins, G. D., Troxell, J. R., and Chatterje, A. P., Proc. Int. Conf. Radiation Effects in Semiconductors, Nice, edited by Albany, J. H., 16 (1979).Google Scholar
15.Joshi, A. and Nimmagadda, R., J. Mater. Res. 6, 1484 (1991).CrossRefGoogle Scholar
16.Bales, G. S., Bruinsma, R., Eklund, E. A., Karunasari, R. P. U., Rudnick, J., and Zangwill, A., Science 249, 264 (1990).CrossRefGoogle Scholar
17.Mazor, A., Srolovitz, D. J., Hagan, P. S., and Bukiet, B. G., Phys. Rev. Lett. 60, 424 (1988).CrossRefGoogle Scholar
18.Karunasari, R. P., Bruinsma, R., and Rudnick, J., Phys. Rev. Lett. 62, 788 (1989).CrossRefGoogle Scholar
19.Bales, G. S., Redfield, A. C., and Zangwill, A., Phys. Rev. Lett. 62, 776 (1989).CrossRefGoogle Scholar
20.Ravi, K. V. and Koch, C. A., Appl. Phys. Lett. 57, 348 (1990).CrossRefGoogle Scholar
21.Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).CrossRefGoogle Scholar
22.Kim, J. S., Kim, M. H., Park, S. S., and Lee, J. Y., J. Appl. Phys. 67, 3354 (1990).CrossRefGoogle Scholar
23.Ravi, K. V. and Joshi, A., Appl. Phys. Lett. 58, 246 (1991).CrossRefGoogle Scholar
24.Matsui, Y., Yuuki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).CrossRefGoogle Scholar