Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-24T12:17:56.187Z Has data issue: false hasContentIssue false

Nanoscale mechanical patterning for the selective deposition of nanostructures

Published online by Cambridge University Press:  31 January 2011

C. A. Friesen*
Affiliation:
Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287
J. R. Hayes
Affiliation:
Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287
*
a)Address all correspondence to this author.codyf@mit.edu
Get access

Abstract

In this paper, we describe a new method for creating nanostructures, and demonstrate its use by depositing Au, Ni, and Zn on a SiO2 passivated Si substrate. The method combined the spatial control of electron-beam lithography with the ease of fabrication of self-assembled arrays. The technique enabled the selective electrochemical deposition of nanostructures by creating specific nucleation sites by nanoindentation. This offered the possibility of accurately creating nanostructures ranging in size from one to hundreds of nanometers. We showed that it is possible to electrically isolate the nanostructures from the substrate and each other by a thermal oxidation process. In principle, this technique allowed fabrication of quantum devices of any geometry.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kolb, D.M., Ullmann, R., and Will, T., Science Mag. 257, 1097 (1997).Google Scholar
2.Magnusson, M.H., Deppert, K., Malm, J.O., Bovin, J.O., and Samuelson, L., J. Nanoparticle Res., 1, 243 (1999).CrossRefGoogle Scholar
3.Rosenfield, M.G., Thomson, M.G.R, Coane, P.J., Kwietniak, K.T., Keller, J., Klause, D.P., Volant, R.P., Blair, C.R., Tremaine, K.S., Newman, T.H., and Hohn, F.J., J. Vac. Sci. Technol. B 11, 2615 (1993).CrossRefGoogle Scholar
4.Andres, R.P., Datta, S., Dorogi, M., Gomez, J., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W., Osifchin, R.F., Reifberger, R., Samanta, M.P., and Tian, W., J. Vac. Sci. Technol. A 14, 1178 (1996).CrossRefGoogle Scholar
5.Saitoh, T., Tanimura, A., and Yoh, K., Jpn. J. Appl. Phys., Part 1 35, 1370 (1996).CrossRefGoogle Scholar
6.Kiehl, R.A., Yamaguchi, M., Ueda, O., Horiguchi, N., and Yohoyama, N., Appl. Phys. Lett. 68, 478 (1996).CrossRefGoogle Scholar
7.Yin, J.S., and Wang, Z.L., Nanostruct. Mater. 11, 845 (1999).CrossRefGoogle Scholar
8.Bandyopadhyay, S., Menon, L., Kouklin, N., Zeng, H., and Sellmyer, D.J., J. Electron. Mater. 28, 515 (1999).CrossRefGoogle Scholar
9.Ponpon, J.P., Grob, J.J., Grob, A., and Stuck, R., J. Appl. Phys. 59, 3921 (1986).CrossRefGoogle Scholar
10.Dimitrijev, S. and Harrison, H.B., J. Appl. Phys. 80, 2467 (1996).CrossRefGoogle Scholar
11.Depas, M., Vermeire, B., Mertens, P.W., and Heyns, M.M., Microelectron. Eng. 28, 125 (1995).CrossRefGoogle Scholar
12.Sunglae, C., Jing, M., Yunki, K., Yi, S., Wong, G.K.L, and Ketterson, J.B., Appl. Phys. Lett. 75, 2761 (1999).Google Scholar
13.Graham, M.J., Sproule, G.I., Caplan, D., and Cohen, M., J. Electrochem. Soc. 119, 883 (1972).CrossRefGoogle Scholar
14.Cowburn, R.P. and Welland, M.E., Science Mag. 287, 1466 (1999).Google Scholar
15.Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O., Welland, M.E., and Tricker, D.M., Phys. Rev. Lett. 83, 1042 (1999).CrossRefGoogle Scholar
16.Katz, J.L., Xing, Y., and Cammarata, R.C., J. Mater. Res. 12, 4457 (1999).CrossRefGoogle Scholar
17.Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., and Snider, G.L., Science Mag. 284, 289 (1999).Google Scholar
18.Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., and Snider, G.L., Science Mag. 277, 928 (1997).Google Scholar
19.Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S., and Bernstein, G.H., Appl. Phys. Lett. 72, 2179 (1998).CrossRefGoogle Scholar
20.Kusaka, T., Ohji, Y., and Mukai, K., Ext. Abst. 18th Conf. Solid State Devices and Mater., 463 (1986).Google Scholar
21.Ralchenko, V., Schirone, L., Sotgiu, G., Zakhidov, A., Baughman, R., Khomich, A., Nunuparov, M., Vlasov, I., Frolov, V., and Karabutov, A., 196th Mtg. of the Electrochem. Soc. Mtg. Abs., 99–2 no. 783 (1999).Google Scholar
22.Holmes, K.C., Wisitsoraat, A., Henderson, T.G., Davidson, J.L., Kang, W.P., and Pulugurta, V., 196th Mtg. of the Electrochem. Soc. Mtg. Abs., 99–2 no. 817 (1999).Google Scholar
23.Xu, J., Ji, W., Tang, S.H., and Huang, W., Microcrystalline and Nanocrystalline Semiconductors, edited by Canham, C.T., Sailor, M.J., Tanaka, K., and Tsai, C-C. (Mater. Res. Soc. Warrendale, PA, 1998), pp. 401406.Google Scholar
24.Makimura, T., Mizuat, T., Ueda, T., and Murakami, K., Microcrystalline and Nanocrystalline Semiconductors, edited by Canham, C.T., Sailor, M.J., Tanaka, K., and Tsai, C-C. (Mater. Res. Soc., Warrendale, PA, 1998), pp. 5156.Google Scholar
25.Malik, M.A., O'Brien, P., Revaprasadu, N., and Wakefield, G., Microcrystalline and Nanocrystalline Semiconductors, edited by Canham, C.T., Sailor, M.J., Tanaka, K., and Tsai, C-C. (Mater. Res. Soc., Warrendale, PA, 1998), pp. 371376.Google Scholar
26.Huiisken, F., Kohn, B, Alexandrescu, R., Cojocaru, S., Crunteanu, A., Ledoux, G., and Reynaud, C., J. Nanoparticle Res. 1, 293 (1999).CrossRefGoogle Scholar
27.Sanchez-Lopez, J.C., Justo, A., and Fernandez, A., Langmuir 15, 7822 (1999).CrossRefGoogle Scholar