Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T04:24:15.239Z Has data issue: false hasContentIssue false

Nano-sizing titanium into titanium carbide by 1-chlorobutane

Published online by Cambridge University Press:  31 January 2011

Yu-Hsu Chang
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China
Hsin-Tien Chiu*
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China
*
a) Address all correspondence to this author. e-mail: htchiu@cc.nctu.edu.tw
Get access

Abstract

TiC nanoparticles (average diameter 10–150 nm) were prepared by reacting bulk Ti powders (average diameter 20 μm) with gaseous 1-chlorobutane at a relatively low temperature (1073–1273 K). 1-Chlorobutane provided the carbon atom in the TiC and the chlorine atom that assisted the shrinking of the size of the original Ti powders. The apparently simple procedure is a complex heterogeneous process combining etching, deposition, and carburization reactions.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oyama, S.T., in The Chemistry of Transition Metal Carbides and Nitrides (Blackie Academic & Professional, Glasgow, U.K., 1996).Google Scholar
2.Schwarzkopf, P., Kieffer, R., Leszynski, W., and Benesovsky, F., in Refractory Hard Metals: Borides, Carbides, Nitrides and Silicides (MacMillan, New York, 1953).Google Scholar
3.Pierson, H.O., in Handbook of Refractor Carbides and Nitrides (Noyes Publications, Park Ridge, NJ, 1996).Google Scholar
4.Tsai, H-Y., Sun, S-C., and Wang, S-J., J. Electrochem. Soc. 147, 2766 (2000).Google Scholar
5.Lee, C-Y., J. Mater. Synth. Proc. 6, 49 (1998).Google Scholar
6.Hu, J-Q., Lu, Q-Y., Tang, K-B., Deng, B., Jiang, R., Qian, Y-T., Zhou, G-E., and Yang, L., Chem. Lett. 5, 474 (2000).Google Scholar
7.Gotoh, Y., Fujimura, K., Koike, M., Ohkoshi, Y., Nagura, M., Akamatsu, K., and Deki, S., Mater. Res. Bull. 36, 2263 (2001).Google Scholar
8.Kim, Y-J., Chung, H., and Kang, S-J.L., Composites A 32, 731 (2001).Google Scholar
9.Jiang, Z. and Rhine, W.E., Chem. Mater. 3, 1132 (1991).Google Scholar
10.Dutremez, S., Gerbier, P., Guerin, C., Henner, B., and Merle, P., Adv. Mater. 10, 465 (1998).Google Scholar
11.Kurokawa, Y., Kobayashi, S., Suzuki, M., Shimazaki, M., and Takahashi, M., J. Mater. Res. 13, 760 (1998).Google Scholar
12.Nartowski, A.M., Parkin, I.P., Craven, A.J., and MacKenzie, M., Adv. Mater. 10, 805 (1998).Google Scholar
13.Nartowski, A.M., Parkin, I.P., MacKenzie, M., Craven, A.J., and MacLeodb, I., J. Mater. Chem. 9, 1275 (1999).CrossRefGoogle Scholar
14.Welham, N.J., and Llewellyn, D.J., J. Eur. Ceram. Soc. 19, 2833 (1999).Google Scholar
15.El-Eskandarany, M.S., Metall. Mater. Trans. A 27, 2374 (1996).Google Scholar
16.Klug, H.P. and Alexander, L.E., in X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, 1974).Google Scholar
17. Powder Diffraction File, Card No. 32-1383, JCPDS, International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081.Google Scholar
18.Ihara, H., Kumashiro, Y., Itoh, A., and Maeda, K., Jpn. J. Appl. Phys. 12, 1462 (1973).CrossRefGoogle Scholar
19.Ramqvist, L., Hamrin, K., Johansson, G., Fahlman, A., and Nordling, C., J. Phys. Chem. Solids 30, 1835 (1969).Google Scholar
20.Allen, T., in Particle Size Measurement (Chapman and Hall, London, U.K., 1990).Google Scholar