Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T08:27:02.226Z Has data issue: false hasContentIssue false

Nickel–tungsten bimetallic sulfide nanostructures of fullerene type

Published online by Cambridge University Press:  03 March 2011

A. Olivas*
Affiliation:
Centro de Ciencias de la Materia Condensada - UNAM, Ensenada, B.C. 22800, México
A. Camacho
Affiliation:
Department of Chemical Engineering, University of Texas-Austin, Austin, Texas 78712
M.J. Yacamán
Affiliation:
Department of Chemical Engineering, University of Texas-Austin, Austin, Texas 78712
S. Fuentes
Affiliation:
Centro de Ciencias de la Materia Condensada - UNAM, Ensenada, B.C. 22800, México
*
a) Address all correspondence to this author. e-mail: aolivas\@ccmc.unam.mx
Get access

Abstract

Bimetallic NiW sulfide nanostructures of the inorganic fullerene-like (IF-like) type were prepared by a chemical method employing ammonium thiotungstate and nickel nitrate as metal-sulfide precursors followed by sulfidation in H2S/H2 at 400 °C. The nanostructures were grown with a Ni excess, at an atomic ratio R = 0.85 (R = Ni/Ni + W). The x-ray diffraction patterns showed poorly crystalline WS2, WO2, NiS, and Ni9S8 phases. High-resolution electron microscopy micrographs revealed the formation of two fullerene-like nanostructures, nickel sulfide nanoparticles and long nanotubes filled with tungsten suboxide, both coated by several WS2 layers. The surface area of 18 m2/g measured by nitrogen adsorption (BET surface-area) revealed that these materials contained micropororosity.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tenne, R., Margulis, L., Genut, M. and Hodes, G.Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444 (1992).CrossRefGoogle Scholar
2.Remskar, M., Skraba, Z., Cleton, F., Sanjines, R. and Levy, F.MoS2 as microtubes. Appl. Phys. Lett. 69, 351 (1996).CrossRefGoogle Scholar
3.Remskar, M., Skraba, Z., Ballif, C., Sanjines, R. and Levy, F.Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study. Surf. Sci. 435, 637 (1999).CrossRefGoogle Scholar
4.Feldman, Y., Wasserman, E., Srolovitz, D.J. and Tenne, R.High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).CrossRefGoogle ScholarPubMed
5.Afanasiev, P., Geantet, C., Thomazeau, C. and Jouget, B.Molybdenum polysulfide hollow microtubules grown at room temperature from solution. Chem. Commun. 12, 1001 (2000).CrossRefGoogle Scholar
6.Yacaman, M.J., Lopez, H., Santiago, P., Galvan, D.H., Garzon, I.L. and Reyes, A.Studies of MoS2 structures produced by election irradiation. Appl. Physl. Lett. 69,1065 (1996).Google Scholar
7.Rao, C.N.R. and Nath, M.: Inorganic nanotubes. J. Chem. Soc., Dalton Trans. 1, 1 (2003).CrossRefGoogle Scholar
8.Feldman, Y., Frey, G.L., Homyonfer, M., Lyakhovitskaya, V., Margulis, L., Cohen, H., Hodes, G., Hutchison, J.L. and Tenne, R.Bulk synthesis of inorganic fullerene-like MS(2) (M=Mo,W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118, 5362 (1996).CrossRefGoogle Scholar
9.Rothshild, A., Sloan, J. and Tenne, R.Growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169 (2000).CrossRefGoogle Scholar
10.Zelenski, C.M. and Dorhout, P.K.Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120, 734 (1998).CrossRefGoogle Scholar
11.Olivas, A., Avalos, M. and Fuentes, S.: Evolution of ctystalline phases in nickel-tungsten sulfide catalysts . Mater. Lett. 43, 1 (2000).Google Scholar
12.Pratt, K.C., Sanders, J.V. and Tamp, N.The role of nickel in the activity of unsupported Ni-Mo hydrodesulfurization catalysts. J. Catal. 66, 82 (1980).CrossRefGoogle Scholar
13.Garreau, F.B., Toulhoat, H., Kasztelan, S. and Paulus, R.Low-temperature synthesis of mixed NiMo sulfides: Structural, textural and catalytic properties. Polyhedron. 5, 211 (1986).CrossRefGoogle Scholar
14.Blanchard, L., Grimblot, J. and Bonelle, J.P.X-ray photoelectron spectroscopy studies on nickel-tungsten mixed sulfide catalysts. J. Catal. 98, 229 (1986).CrossRefGoogle Scholar
15.Tenne, R.Doped and heteroatom-containing fullerene-like structures and nanotubes. Adv. Mater. 7, 965 (1995).CrossRefGoogle Scholar
16.Nath, M. and Rao, C.N.R.: MoSe2 and WSe2 nanotubes and related structures. Chem. Commun. 21, 2236 (2001).CrossRefGoogle Scholar
17.Nath, M., Govindaraj, A. and Rao, C.N.R.Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13, 283 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
18.Chianelli, R.R. and Pecoraro, T.A.: Carbon-containing molybdenum and tungsten sulfide catalysts. U.S. Patent No. 4 508 847 (1985).Google Scholar
19.Pecoraro, T.A. and Chianelli, R.R.: Hydrogenation processes using carbon-containing molybdenum and tungsten sulfide catalysts. U.S. Patent No. 4 528 089 (1985).Google Scholar
20.Fuentes, S., Díaz, G., Pedraza, F., Rojas, H. and Rosas, N.The influence of a new preparation method on the catalytic properties of CoMo and NiMo sulfides. J. Catal. 113, 535 (1988).CrossRefGoogle Scholar
21.Olivas, A., Samano, E. and Fuentes, S.Hydrogenation of cyclohexanone on nickel-tungsten sulfide catalysts. Appl. Catal. A: General 220, 279 (2001).CrossRefGoogle Scholar
22.Moulder, J.F., Stickle, W.F., Sobol, P.E. and Bomben, K.D: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).Google Scholar
23.Rothshild, A., Cohen, S.R. and Tenne, R.WS2 nanotubes as tips in scanning probe microscopy. Appl. Phys. Lett. 75, 4025 (1999).CrossRefGoogle Scholar
24.Wang, H.W., Skeldon, P., Thompson, G.E. and Wood, G.C.Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate. J. Mater. Sci. 32, 497 (1997).CrossRefGoogle Scholar
25.Walton, R.I., Dent, A.J. and Hibble, S.J.In situ investigation of the thermal decomposition of ammonium tetrathiomolybdate using combined time-resolved x-ray absortion spectroscopy and x-ray diffraction. Chem. Mater. 10, 3737 (1998).CrossRefGoogle Scholar
26.Walton, R.I. and Hibble, S.J.A combined in situ x-ray absortion spectroscopy and x-ray diffraction study of the thermal decomposition of ammonium tetrathiotungstate. J. Mater. Chem. 9, 1347 (1999).CrossRefGoogle Scholar
27.Alonso, G., Berhault, G., Aguilar, A., Collins, V., Ornelas, C., Fuentes, S. and Chianelli, R.R.Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates. J. Catal. 208, 359 (2002).CrossRefGoogle Scholar
28.Nava, H., Ornelas, C., Aguilar, A., Berhault, G., Fuentes, S. and Alonso, G.Cobalt molybdenum sulfide catalysts prepared by in situ activation of bimetallic (Co-Mo) alkylthiomolybdates. Catal. Lett. 86, 257 (2003).CrossRefGoogle Scholar
29.Chianelli, R.R., Ruppert, A.F., Yacamán, M.J. and Vazquez, A.HREM studies of layered transition-metal sulfide catalytic materials. Catal. Today 23, 269 (1995).CrossRefGoogle Scholar
30.Chianelli, R.R.Amorphous and poorly crystalline transition metal chalcogenides. Int. Rev. Phys. Chem. 2, 127 (1985).CrossRefGoogle Scholar
31.Olivas, A., Cruz-Reyes, J., Petranovskii, V., Avalos, M. and Fuentes, S.Influence of preparation conditions on formation of crystalline phases of nickel sulfide. Mater. Lett. 38, 141 (1999).CrossRefGoogle Scholar
32.Margulis, L., Salitra, G., Tenne, R. and Talianken, M.Nested fullerene-like structures. Nature 365, 113 (1993).CrossRefGoogle Scholar
33.Zhu, Y.Q., Hsu, W.K., Terrones, H., Firth, S., Grobert, N., Chang, B.H., Terrones, M., Wei, B.Q., Kroto, H.W., Walton, D.R.M., Boothroyd, C.B., Kinloch, I., Chen, G.Z., Windle, A.H. and Fray, D.J.Morphology, structure and growth of WS2 nanotubes. J. Mater. Chem. 10, 2570 (2000).CrossRefGoogle Scholar
34.Homyonfer, M., Alperson, B., Rosenberg, Y., Sapir, L., Cohen, S.R., Hodes, G. and Tenne, R.Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy. J. Am. Chem. Soc. 119, 2693 (1997).CrossRefGoogle Scholar
35.Olivas, A.: Ph.D. Thesis, CICESE, Ensenada, B.C., México, 1998, appendix 1, p. 69.Google Scholar
36.Glemser, O., Weidelt, J. and Freund, F.Genotypishe oxidhydrate des wolframs. Zur frague der wolframblauverbindungen. Z. Anorg. Allg. Chem. 332, 299 (1964).CrossRefGoogle Scholar
37.Liang, K.S., Chien, F.Z., Moss, S.C. and Chianelli, R.R.: Structure of poorly crystalline MoS2. A modeling study. J. Non-Cryst. Solids 79, 251 (1986).CrossRefGoogle Scholar
38.Seifert, G., Terrones, H., Terrones, M., Jungnickel, G. and Frauenheim, T.Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146 (2000).CrossRefGoogle ScholarPubMed
39.Zhu, Y.Q., Hsu, W.K., Kroto, H.W., and Walton, D.R.M.: Carbon nanotube template promoted growth of NbS2 nanotubes/nanorods. Chem. Commun. 21, 2184 (2001).CrossRefGoogle Scholar
40.Hsu, W.K., Zhu, Y.Q., Yao, N., Firth, S., Clark, R.J.H., Kroto, H.W. and Walton, D.R.M.Titanium-doped molybdenum disulfide nanostructures. Adv. Funct. Mater. 11, 69 (2001).3.0.CO;2-D>CrossRefGoogle Scholar
41.Homyonfer, M., Tenne, R., and Feldman, Y.: Method for preparation of metal intercalated fullerene-like metal chalcogenides. U.S. Patent No. 6 217 843 (2001).Google Scholar