Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T14:12:52.877Z Has data issue: false hasContentIssue false

One-dimensional β–Ga2O3 nanostructures on sapphire (0001): Low-temperature epitaxial nanowires and high-temperature nanorod bundles

Published online by Cambridge University Press:  01 December 2005

Ko-Wei Chang
Affiliation:
Department of Chemical Engineering, National Cheng Kung University,Tainan, Taiwan, Republic of China
Jih-Jen Wu*
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China; and Center for Micro/Nano Technology Research, National Cheng Kung University, Tainan, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: wujj@mail.ncku.edu.tw
Get access

Abstract

Well-aligned Ga2O3 nanowires were formed on the sapphire (0001) substrates at temperatures of 650–450 °C using a single precursor of gallium acetylacetonate via a vapor-liquid-solid (VLS) method. Structural analyses reveal that the well-aligned Ga2O3 nanowires are expitaxially grown on the sapphire (0001) with Ga2O3/ sapphire orientational relationship [201]||[0001] and [211]||[1120]. In addition, formation of the flowerlike Ga2O3 nanorod bundles at a temperature of 750 °C via the vapor-solid (VS) mechanism was also demonstrated. Instead of being catalysts in the VLS method, the Au nanoparticles are proposed to play a role in sinking the Ga vapor for forming the nuclei of Ga2O3 nanorods in the VS method.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ogita, M., Saika, N., Nakanishi, Y. and Hatanaka, Y.: Ga2O3 thin films for high-temperature gas sensors. Appl. Surf. Sci. 142, 188 (1999).CrossRefGoogle Scholar
2.Edwards, D.D., Mason, T.O., Goutenoir, F. and Poeppelmeier, K.R.: A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system. Appl. Phys. Lett. 70, 1706 (1997).Google Scholar
3.Choi, Y.C., Kim, W.S., Park, Y.S., Lee, S.M., Bae, D.J., Lee, Y.H., Park, G-S., Choi, W.B., Lee, N.S. and Kim, J.M.: Catalytic growth of β–Ga2O3 nanowires by arc discharge. Adv. Mater. 12, 746 (2000).Google Scholar
4.Han, W.Q., Kohler-Redlich, P., Ernst, F. and Ruhle, M.: Growth and microstructure of Ga2O3 nanorods. Solid State Commun. 115, 527 (2000).Google Scholar
5.Liang, C.H., Meng, G.W., Wang, G.Z., Wang, Y.W. and Zhang, L.D.: Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires. Appl. Phys. Lett. 78, 3202 (2001).CrossRefGoogle Scholar
6.Chun, H.J., Choi, Y.S., Bae, S.Y., Seo, H.W., Hong, S.J., Park, J. and Yang, H.: Controlled structure of gallium oxide nanowires. J. Phys. Chem. B 107, 9042 (2003).CrossRefGoogle Scholar
7.Wu, X.C., Song, W.H., Huang, W.D., Pu, M.H., Zhao, B., Sun, Y.P. and Du, J.J.: Crystalline gallium oxide nanowires: Intensive blue light emitters. Chem. Phys. Lett. 328, 5 (2000).Google Scholar
8.Gundiah, G., Govindaraj, A. and Rao, C.N.R.: Nanowires, nanobelts and related structures of Ga2O3. Chem. Phys. Lett. 351, 189 (2002).Google Scholar
9.Dai, Z.R., Pan, Z.W. and Wang, Z.L.: Gallium oxide nanoribbons and nanosheets. J. Phys. Chem. B 106, 902 (2002).Google Scholar
10.Kim, B.C., Sun, K.T., Park, K.S., Im, K.J., Noh, T., Sung, M.Y., Kim, S., Nahm, S., Choi, Y.N. and Park, S.S.: β–Ga2O3 nanowires synthesized from milled GaN powders. Appl. Phys. Lett. 80, 479 (2002).Google Scholar
11.Wang, Z.L.: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides from materials to nanodevices. Adv. Mater. 15, 432 (2003).CrossRefGoogle Scholar
12.Pan, Z.W., Dai, Z.R. and Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).CrossRefGoogle ScholarPubMed
13.Fu, L., Liu, Y., Hu, P., Xiao, K., Yu, G. and Zhu, D.: Ga2O3 nanoribbons: Synthesis, characterization, and electronic properties. Chem. Mater. 15, 4287 (2003).CrossRefGoogle Scholar
14.Chang, K.W. and Wu, J.J.: Low-temperature growth of well-aligned β–Ga2O3 nanowires from a single-source organometallic precursor. Adv. Mater. 16, 545 (2004).Google Scholar
15.Lao, J.Y., Huang, J.Y., Wang, D.Z. and Ren, Z.F.: Self-assembled In2O3 nanocrystal chains and nanowire networks. Adv. Mater. 16, 65 (2004).Google Scholar
16.Bower, C., Zhou, O., Zhu, W., Werder, D.J. and Jin, S.: Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77, 2767 (2000).Google Scholar