Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T20:28:06.116Z Has data issue: false hasContentIssue false

Optical and physical properties of sputtered Si:Al:O:N films

Published online by Cambridge University Press:  31 January 2011

R.W. Knoll
Affiliation:
Johnson Control, Inc., Milwaukee, Wisconsin 53202
C.H. Henager Jr.
Affiliation:
Battelle, Pacific Northwest Laboratories, Richland, Washington 99352
Get access

Abstract

Mechanical and optical properties and structural characteristics are described for Si:N films with Al and O additions (SixAl1−xOyN1−y) deposited by reactive RF diode sputtering on Si and SiO2 substrates. The thermal and intrinsic stress components, elastic stiffness, coefficient of thermal expansion (CTE), and refractive index were measured for films ranging in thickness from ∼2 μm to 50 μm. Some structural and microstructural data were obtained using x-ray diffraction, optical and scanning-electron microscopy, and surface profilometry. Alloying Si:N with Al to form Si:Al:N greatly reduced the compressive intrinsic and total stress found in pure Si:N films on Si. Addition of O to the Si:Al:N moderately increased the intrinsic stress, decreased the elastic stiffness, and produced a smoother, more glassy (amorphous) film.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pawlewicz, W. T. and Martin, P. M., Battelle, Pacific Northwest Laboratories, Richland, WA (unpublished).Google Scholar
2.Lucovsky, G., Richard, P. D., Tsu, D. V., Lin, S. Y., and Markunas, R. J., J. Vac. Sci. Technol. A4 (3), 681 (1986); D. V. Tsu and G. Lucovsky, ibid., 480.Google Scholar
3.Nguyen, S. V., J. Vac. Sci. Technol. B4 (5), 1159 (1986).CrossRefGoogle Scholar
4.Tiku, S. K. and Smith, G. C., IEEE Trans. Elec. Devices ED-31 (1), 105 (1984).CrossRefGoogle Scholar
5.Bossi, D. E., Hammer, J. M., and Shaw, J. M., Appl. Opt. 26 (4), 609 (1987).CrossRefGoogle Scholar
6.Lam, D. K. W., Appl. Opt. 23 (16), 2744 (1984).Google Scholar
7.Pawlewicz, W. T. and Hays, D. D., Thin Solid Films 94, 31 (1982).CrossRefGoogle Scholar
8.Manifacier, J. C., Gasiot, J., and Fillard, J. P., J. Phys. E 9, 1002 (1976).Google Scholar
9.Campbell, D. S., in Handbook of Thin Film Technology, edited by Maissel, L. I. and Glang, R. (McGraw-Hill, New York, 1976), p. 12.29.Google Scholar
10.Knoll, R. W. and Bradley, E. R., Thin Solid Films 117, 201 (1984).Google Scholar
11.Retajczyk, T. F. Jr. and Sinha, A. K., Appl. Phys. Lett. 36, 162 (1980).Google Scholar
12.Retajczyk, T. F., Jr., and Sinha, A. K., Thin Solid Films 70, 241 (1980).CrossRefGoogle Scholar
13.Hoffman, R. W., in Physics of Nonmetallic Thin Films, edited by Dupuy, C. H. S. and Fillard, J. P. (Plenum, New York, 1976), p. 273.CrossRefGoogle Scholar
14.Yamai, I. and Ota, T., Adv. Ceram. Mater. 2 (4), 784 (1987).Google Scholar