Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T04:38:24.770Z Has data issue: false hasContentIssue false

Oxidation-induced copper segregation in Cu60Zr30Ti10 bulk metallic glass

Published online by Cambridge University Press:  01 April 2006

C.Y. Tam
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
C.H. Shek*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
*
a) Address all correspondence to this author. e-mail: apchshek@cityu.edu.hk
Get access

Abstract

Copper segregation in a subsurface layer during annealing of Cu60Zr30Ti10 bulk metallic glass at 773 K under oxygen atmosphere has been investigated by x-ray diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. The formation of metallic copper is strongly dependent on the annealing environment. Various oxides with metallic copper are formed after annealing in oxygen atmosphere, but only crystalline intermetallic phases are found under vacuum annealing. Besides, surface characterization results show that the sample annealed in oxygen and vacuum result in enrichment and depletion of Cu on the surface region, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kimura, H.M., Asami, K., Inoue, A., Masumoto, T.: The oxidation of amorphous Zr-based binary alloys in air. Corros. Sci. 35, 909 (1993).CrossRefGoogle Scholar
2.Asami, K., Kikuchi, M., Hashimoto, K.: An Auger electron spectroscopic study of the corrosion behavior of an amorphous Zr40Cu60 alloy. Corros. Sci. 39, 95 (1997).CrossRefGoogle Scholar
3.Szummer, A., Pisarek, M., Dolata, M., Molnar, A., Janik-Czachor, M., Varga, M., Sikorski, K.: Effect of ageing in air/corrosion on morphology and catalytic properties of Cu-based amorphous alloy ribbons. Mater. Sci. Forum 377, 15 (2001).CrossRefGoogle Scholar
4.Kudelski, A., Janik-Czachor, M., Bukowska, J., Pisarek, M., Szummer, A.: Effect of ageing in air on morphology and surface-enhanced Raman scattering (SERS) activity of Cu-based amorphous alloys. Mater. Sci. Eng. A 326, 364 (2002).CrossRefGoogle Scholar
5.Jastrow, L., Köster, U., Meuris, M.: Catastrophic oxidation of Zr-TM (noble metals) glasses. Mater. Sci. Eng. A 375–377, 440 (2004).CrossRefGoogle Scholar
6.Yamasaki, M., Nabazaki, H., Asami, K., Hashimoto, K.: Oxidation behavior of amorphous Ni–Zr and Ni–Zr–Sm alloys. J. Electrochem. Soc. 147, 4502 (2000).CrossRefGoogle Scholar
7.Liu, L., Chan, K.C.: Oxidation of Zr55Cu30Al10Ni5 bulk metallic glass in the glassy state and the supercooled liquid state. Appl. Phys. A 80, 1737 (2005).CrossRefGoogle Scholar
8.Aoki, K., Masumoto, T.: Crystallization of amorphous Zr–Ni alloys in the presence of H2, CO, O2, N2 and argon gases. J. Mater. Sci. 21, 793 (1986).CrossRefGoogle Scholar
9.Kilo, M., Hund, M., Sauer, G., Baiker, A., Wokaun, A.: Reaction induced surface segregation in amorphous CuZr, NiZr and PdZr alloys—An XPS and SIMS depth profiling study. J. Alloy. Compd. 236, 137 (1996).CrossRefGoogle Scholar
10.Vanini, F., Büchler, X-N.Yu. St., Erbudak, M., Schlapbach, L., Baiker, A.: Effect of oxygen and hydrogen on the surface segregation of amorphous and crystalline Zr alloys. Surf. Sci. 189–190, 1117 (1987).CrossRefGoogle Scholar
11.Bao, Q.X., Zhao, B.Y., Li, Z., Min, E.Z.: Surface segregation and catalytic hydrogenation properties of Ni67Zr33 amorphous alloy. Appl. Catal. A 85, 101 (1992).Google Scholar
12.Tam, C.Y., Shek, C.H.: Oxidation behavior of Cu60Zr30Ti10 bulk metallic glass. J. Mater. Res. 20, 1396 (2005).CrossRefGoogle Scholar
13.Tam, C.Y., Shek, C.H.: Effects of alloying on oxidation of Cu-based bulk metallic glasses. J. Mater. Res. 20, 2647 (2005).CrossRefGoogle Scholar
14.Park, J-H., Natesan, K.: Oxidation of copper and electronic transport in copper oxides. Oxid. Met. 39, 411 (1993).CrossRefGoogle Scholar
15.Jiang, J.Z., Saida, J., Kato, H., Ohsuna, T., Inoue, A.: Is Cu60Ti10Zr30 a bulk glass-forming alloy. Appl. Phys. Lett. 82, 4041 (2003).CrossRefGoogle Scholar
16.Cocke, D.L., Liang, G., Owens, M., Halverson, D.E., Naugle, D.G.: The oxidation behavior of amorphous and polycrystalline Zr–Ni alloys. Mater. Sci. Eng. 99, 497 (1988).CrossRefGoogle Scholar
17.Song, Z., Bao, X., Wild, U., Muhler, M., Ertl, G.: Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS, and XRD. Appl. Surf. Sci. 134, 31 (1998).CrossRefGoogle Scholar