Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T15:18:04.189Z Has data issue: false hasContentIssue false

Photoluminescence and I–V characteristics of ZnS grown on silicon nanoporous pillar array

Published online by Cambridge University Press:  31 January 2011

Hai Jun Xu
Affiliation:
Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China
He Shun Jia
Affiliation:
Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China
Zhi Tao Yao
Affiliation:
Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China
Xin Jian Li*
Affiliation:
Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: lixj@zzu.edu.cn
Get access

Abstract

Silicon nanoporous pillar array (Si-NPA) is a silicon hierarchical structure with regularly patterned surface morphology. Through a heterogeneous reaction process, zinc sulfide nanocrystallites (nc-ZnS) were grown onto Si-NPA and a unique heterostructure of ZnS/Si-NPA was obtained. The formation of wurtzite nc-ZnS was proved by x-ray diffraction, and the average grain size was evaluated to be ∼18 nm. X-ray photoelectron spectroscopy disclosed that as-grown nc-ZnS was well separated from Si-NPA by a SiO2 thin layer of ∼1.3 nm. The photoluminescence (PL) spectrum of ZnS/Si-NPA showed that in addition to the two red PL bands peaked at ∼648 and ∼705 nm observed in Si-NPA, three other PL bands peaked at ∼365, ∼418, and ∼472 nm were observed and attributed to the PL from nc-ZnS. It was also demonstrated that as-prepared ZnS/Si-NPA heterostructure could exhibit good rectification characteristic featured by a high forward current density of ∼75 mA/cm2 at 2 V and high reverse breakdown voltage of ∼10 V. Our results indicated that ZnS/Si-NPA might be a valuable heterostructure nanosystem to be further probed for achieving enhanced optical and electrical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H.Lieber, C.M.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 2006CrossRefGoogle ScholarPubMed
2Oh, D.C., Suzuki, T., Kim, J.J., Makino, H., Hanada, T., Yao, T.Ko, H.J.: Capacitance-voltage characteristics of ZnO/GaN heterostructures. Appl. Phys. Lett. 87, 162104 2005CrossRefGoogle Scholar
3Tzolov, M., Chang, B., Yin, A., Straus, D., Xu, J.M.Brown, G.: Electronic transport in a controllable grown carbon nanotube-silicon heterojunction array. Phys. Rev. Lett. 92, 075505 2004CrossRefGoogle Scholar
4Vasa, P., Singh, B.P.Ayyub, P.: Coherence properties of the photoluminescence from CdS–ZnO nanocomposite thin films. J. Phys.: Condens. Matter 17, 189 2005Google ScholarPubMed
5Prabhakaran, K., Meneau, F., Sankar, G., Sumitomo, K., Murashita, T., Homma, Y., Greaves, G.N.Ogino, T.: Luminescent nanoring structures on silicon. Adv. Mater. 15, 1522 2003CrossRefGoogle Scholar
6Lei, Y., Chim, W.K., Sun, H.P.Wilde, G.: Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Appl. Phys. Lett. 86, 103106 2005CrossRefGoogle Scholar
7Xu, H.J.Li, X.J.: Preparation, structural and photoluminescent properties of CdS/silicon nanoporous pillar array. J. Phys.: Condens. Matter 19, 056003 2007Google Scholar
8Gokarna, A., Pavaskar, N.R., Sathaye, S.D., Ganesan, V.Bhoraskar, S.V.: Electroluminescence from heterojunction of nanocrystalline CdS and ZnS with porous silicon. J. Appl. Phys. 92, 2118 2002CrossRefGoogle Scholar
9Zhang, P., Kim, P.S.Sham, T.K.: Nanostructured CdS prepared on porous silicon substrate: structure, electronic, and optical properties. J. Appl. Phys. 91, 6038 2002CrossRefGoogle Scholar
10Cheah, K.W., Xu, L.Huang, X.: White light luminescence from nano-ZnS doped porous silicon. Nanotechnology. 12, 238 2001Google Scholar
11Li, X.J., Hu, X., Jia, Y.Zhang, Y.H.: Tunable superstructures in hydrothermally etched iron-passivated porous silicon. Appl. Phys. Lett. 75, 2906 1999CrossRefGoogle Scholar
12Xu, H.J., Fu, X.N., Sun, X.R.Li, X.J.: Investigations on the structural and optical properties of silicon nanoporous pillar array. Acta Phys. Sin. 54, 2352 2005Google Scholar
13Zhu, Y.C., Bando, Y., Xue, D.F.Golberg, D.: Oriented assemblies of ZnS one-dimensional nanostructures. Adv. Mater. 16, 831 2004CrossRefGoogle Scholar
14Menner, R., Dimmler, B., Mauch, R.H.Schock, H.W.: II–VI compound thin films for windows in heterojunctions solar cells. J. Cryst. Growth 86, 906 1988CrossRefGoogle Scholar
15Jiang, X., Xie, Y., Lu, J., Zhu, L., He, W.Qian, Y.: Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation. Chem. Mater. 13, 1213 2001CrossRefGoogle Scholar
16Fang, X.Zhang, L.: One-dimensional (1D) ZnS nanomaterials and nanostructures. J. Mater. Sci. Technol. 22, 721 2006Google Scholar
17Li, Q.Wang, C.: Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Appl. Phys. Lett. 82, 1398 2003CrossRefGoogle Scholar
18Sun, L., Liu, C., Liao, C.Yan, C.: ZnS nanoparticles doped with Cu (I) by controlling coordination and precipitation in aqueous solution. J. Mater. Chem. 9, 1655 1999CrossRefGoogle Scholar
19Yamada, Y., Yamamoto, T., Nakamura, S., Taguchi, T., Sasaki, F., Kobayashi, S.Tani, T.: Biexciton luminescence from cubic ZnS epitaxial layers. Appl. Phys. Lett. 69, 88 1996CrossRefGoogle Scholar
20Yamamoto, T., Kishimoto, S.Iida, S.: Control of valence states for ZnS by triple-codoping method. Phys. B (Amsterdam) 308–310, 916 2001CrossRefGoogle Scholar
21Bredol, M.Merikhi, J.: ZnS precipitation: Morphology control. J. Mater. Sci. 33, 471 1998CrossRefGoogle Scholar
22Chen, X.Y., Lu, Y.F., Tang, L.J., Wu, Y.H., Cho, B.J., Xu, X.J., Dong, J.R.Song, W.D.: Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 97, 014913 2005CrossRefGoogle Scholar
23Mitchel, D.F., Clark, K.B., Bardwell, J.A., Leonard, W.N., Massoumi, G.R.Mitchell, I.V.: Film thickness measurements of SiO2 by XPS. Surf. Interface Anal. 21, 44 1994CrossRefGoogle Scholar
24Ye, C., Fang, X., Li, G.Zhang, L.: Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett. 85, 3035 2004CrossRefGoogle Scholar
25Zhai, T., Gu, Z., Ma, Y., Yang, W., Zhao, L.Yao, J.: Synthesis of ordered ZnS nanotubes by MOCVD-template method. Mater. Chem. Phys. 100, 281 2006CrossRefGoogle Scholar
26Xue, X., Chen, J.Hu, Y.: Preparation of well uniform-sized and monodisperse ZnS nanoballs by γ-irradiation method. Mater. Lett. 61, 115 2007CrossRefGoogle Scholar
27Gokarna, A., Bhoraskar, S.V., Pavaskar, N.R.Sathaye, S.D.: Optoelectronic characterisation of porous silicon/CdS and ZnS Systems. Phys. Status Solidi 182, 175 20003.0.CO;2-O>CrossRefGoogle Scholar
28Deshmukh, N.V., Bhave, T.M., Ethiraj, A.S., Sainkar, S.R., Ganesan, V., Bhoraskar, S.V.Kulkarni, S.K.: Photoluminescence and I-V characteristics of a CdS nanoparticles porous silicon heterojunction. Nanotechnology 12, 290 2001CrossRefGoogle Scholar
29Hazdra, P., Reeve, D.J.Sands, D.: Origin of the defect states at ZnS/Si interfaces. Appl. Phys. A 61, 637 1995CrossRefGoogle Scholar
30Becker, W.G.Bard, A.J.: Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 87, 4888 1983CrossRefGoogle Scholar
31Soumitra, K., Subhajit, B.Subhadra, C.: Nanometre to micrometre wide ZnS nanoribbons. Nanotechnology 16, 3074 2005Google Scholar
32Hu, P., Liu, Y., Fu, L., Cao, L.Zhu, D.: Self-assembled growth of ZnS nanobelt networks. J. Phys. Chem. B 108, 936 2004CrossRefGoogle Scholar
33Denzler, D., Olschewski, M.Sattler, K.: Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841 1998CrossRefGoogle Scholar
34Li, Y., Ye, C., Fang, X., Yang, L., Xiao, Y.Zhang, L.: Fabrication and photoluminescence of SiO2-sheathed semiconducting nanowires: The case of ZnS/SiO2. Nanotechnology 16, 501 2005CrossRefGoogle Scholar
35Ye, C., Fang, X., Wang, M.Zhang, L.: Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts. J. Appl. Phys. 99, 063504 2006CrossRefGoogle Scholar
36Kumbhojkar, N., Nikesh, V.V., Kshirsagar, A.Mahamuni, S.: Photophysical properties of ZnS nanoclusters. J. Appl. Phys. 88, 6260 2000CrossRefGoogle Scholar