Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T07:21:48.607Z Has data issue: false hasContentIssue false

Photoluminescence and optical absorption in CaS : Eu2+ : Sm3+ thin films

Published online by Cambridge University Press:  31 January 2011

J-G. Zhang
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
P.C. Eklund
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40511-8433
Z.L. Hua
Affiliation:
Materials and Nuclear Engineering Department, University of Maryland, College Park, Maryland 20742-2115
L.G. Salamanca-Riba
Affiliation:
Materials and Nuclear Engineering Department, University of Maryland, College Park, Maryland 20742-2115
M. Wuttig
Affiliation:
Materials and Nuclear Engineering Department, University of Maryland, College Park, Maryland 20742-2115
P.K. Soltani
Affiliation:
Quantex Corporation, Rockville, Maryland
G.M. Storti
Affiliation:
Quantex Corporation, Rockville, Maryland
Get access

Abstract

The optical absorption and photoluminescence of Eu2+ : Sm3+-doped CaS films have been investigated in this paper. The energy dependence of the refractive index and absorption coefficient of the film were obtained by analyzing transmission and reflection spectra of the thin film. The refractive index at low energies is very close to the bulk value for CaS (n = 2.03) and decreases with increasing energy in the range of 1.2 to 2.5 eV. The energy gap of CaS: Eu2+ : Sm3+ thin films is found to be a direct gap with value Eg = 4.48 eV. Photoluminescence studies on annealed CaS: Eu2+ : Sm3+ thin films showed a broad band at ∼1.92 eV identified with emission from Eu2+ ions, and a set of sharp lines corresponding to emission from Sm3+ ions. Most of the strong features presented in the room temperature spectra are found in good agreement with previous bulk studies of CaS: Eu2+ and CaS: Sm3+. The abnormal increase of the Sm3+ photoluminescence with increasing temperature is explained by the phonon-assisted energy transfer from Eu2+ ions to Sm3+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Blasse, G., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K. A. Jr and Eyring, L. (North Holland, 1979), p. 237.Google Scholar
2.Lehmann, W., J. Electrochem. Soc: Solid State Sci. Technol. 117, 1389 (1970).CrossRefGoogle Scholar
3.Lehmann, W. and Ryan, F. M., J. Electrochem. Soc: Solid State Sci. Technol. 119, 275 (1972).CrossRefGoogle Scholar
4.Lehmann, W., J. of Lumin. 5, 87 (1972).CrossRefGoogle Scholar
5.Weakliem, H. A., Anderson, C. H., and Sabisky, E. S., Phys. Rev. B 2, 4354 (1970).CrossRefGoogle Scholar
6.Yamashita, N. and Asano, S., J. Phys. Soc. Jpn. 56, 352 (1987).CrossRefGoogle Scholar
7.Chase, L. L., Phys. Rev. B 2, 2308 (1970).CrossRefGoogle Scholar
8.Yanase, A., J. Phys. Soc. Jpn. 42, 1680 (1977).CrossRefGoogle Scholar
9.Asano, S. and Nakao, Y., J. Phys. C: Solid State Phys. 12, 4095 (1979).CrossRefGoogle Scholar
10.McClure, D. S. and Kiss, Z., J. Chem. Phys. 37, 3215 (1963).Google Scholar
11.Lehmann, W., J. Electrochem. Soc. 118, 1164 (1971).CrossRefGoogle Scholar
12.Lehmann, W. and Ryan, F. M., J. Electrochem. Soc: Solid State Sci. Technol. 118, 477 (1971).CrossRefGoogle Scholar
13.Okamoto, F. and Kato, K., J. Electrochem. Soc. 130, 432 (1983).CrossRefGoogle Scholar
14.Kasano, H., Megumi, K., and Yamanoto, H., J. Electrochem. Soc. 131, 1953 (1984).CrossRefGoogle Scholar
15.Rao, R. P., J. Electrochem. Soc. 132, 2033 (1985).CrossRefGoogle Scholar
16.Nakao, Y., J. Phys. Soc. Jpn. 48, 534 (1980).CrossRefGoogle Scholar
17.Tomaschek, R., Phys. Z. 33, 878 (1932).Google Scholar
18.Houghton, J. T., Infra-red Physics (Oxford University Press, 1966).Google Scholar
19.Manifacier, J. C., Gasiot, J., and Fillard, J. P., J. Phys. E: Sci. Instrument 9, 1002 (1976).CrossRefGoogle Scholar
20.Pankove, J. I., Optical Processes in Semiconductors (Dover Pub. Inc., New York, 1971).Google Scholar
21.Kobayashi, H., Tanaka, S., Shonker, V., Shiiki, M., and Deguchi, H., J. Cryst. Growth 72, 559 (1985).CrossRefGoogle Scholar
22.Yamada, N., Shionoya, S., and Kushida, T., J. Phys. Soc. Jpn. 32, 1577 (1972).CrossRefGoogle Scholar