Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-28T03:19:11.154Z Has data issue: false hasContentIssue false

Photovoltaic effect of Sn2P2S6 ferroelectric crystal and ceramics

Published online by Cambridge University Press:  31 January 2011

Y. W. Cho
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1, Kusung-dong Yusung-gu, Taejon 305-701, South Korea
S. K. Choi
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1, Kusung-dong Yusung-gu, Taejon 305-701, South Korea
Yu. M. Vysochanskii
Affiliation:
Institute of Solid State Physics & Chemistry of Uzhgorod State University, 294000 Uzhgorod, Ukraine
Get access

Abstract

To investigate the photovoltaic effect in Sn2P2S6 ferroelectrics, Sn2P2S6 crystal and ceramic sample that had a high relative density of 95% and a grain size of below 1 μm were fabricated. The steady-state photovoltaic currents under infrared light illumination on both Sn2P2S6 crystal and ceramic sample were observed for the first time. The photovoltaic currents ipv on Sn2P2S6 ceramic sample and crystal were 5 and 25 nA/cm, respectively. The difference in the magnitude of the photovoltaic current resulted from the difference in the remanent polarization Pr between the crystal and the ceramic sample. The values of the photovoltaic field Epv determined from I–V curve for Sn2P2S6 ceramic sample and crystal were 0.2 and 6 V/cm, respectively; these values were several orders lower than that observed on the perovskite-type ferroelectric ceramics. The photovoltaic fields observed in this study were discussed with the conductivity of the crystal and the ceramic sample, in consideration of the figure of merit for the photostriction.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Glass, A.M., von der Linde, D., Auston, D.H., and Negran, T.J., J. Electron. Mater. 4, 915 (1975).CrossRefGoogle Scholar
2.Brody, P.S., Ferroelectrics 50, 27 (1983).CrossRefGoogle Scholar
3.Uchino, K., Aizawa, M., etc., Ferroelectrics 64, 199 (1985).Google Scholar
4.Chu, S-Y., Ye, Z., and Uchino, , Adv. Perform. Mater. 1, 129 (1994).CrossRefGoogle Scholar
5.Chu, S-Y. and Uchino, Kenji, Ferroelectrics 174, 185 (1995).CrossRefGoogle Scholar
6.Nonaka, , Akiyama, , Hagio, , Takase, , and Baba, , etc., J. Ceram. Soc. Jpn. 105, 641 (1998).Google Scholar
7.Poosanaas, P., Dogan, A., Thakoon, S., and Uchino, K., J. Appl. Phys. 84, 1508 (1998).Google Scholar
8.Fukuda, T., Nakamura, H., and Hattori, S., etc., Trans. Jpn. Soc. Mech. Eng. C 61, 586 (1995–6).Google Scholar
9.Nitsche, R. and Wild, P., Mat. Res. Bull. 5, 419 (1970).CrossRefGoogle Scholar
10.Carpentier, C.D. and Nitsche, R., Mat. Res. Bull. 9, 1097 (1974).CrossRefGoogle Scholar
11.Odoulov, S., Shumelyuk, A., etc., Jpn. J. Appl. Phys. 35, 5154 (1996).Google Scholar
12.Kroupa, J., Tyagur, Y., Grabar, A.A., etc., Ferroelectrics 223, 421 (1999).Google Scholar
13.Maior, M.M., Gurzan, M.I., Molnar, Sh.B., Prits, I.P., and Vysochanskii, Yu.M., IEEE. Trans. Ultrason. Ferrolectr. 47, 877 (2000).CrossRefGoogle Scholar
14.Schafer, H., Chemical transport reaction (Academic Press, New York and London, U.K., 1964).Google Scholar
15.Molnar, A.A., Vysochanskii, Yu.M., Horvat, A.A., and Nakonechnii, Yu.S., Ferroelectrics 192, 137 (1997).Google Scholar
16.Uchino, K.et al., Ceram. Dielectr. Ceram. Trans. 8, 107 (1990).Google Scholar
17.Xu, J.J., Shaikh, A.S., and Vest, R.W., IEEE. Trans. Ultrason. Ferroelectr. 36, 307 (1989).CrossRefGoogle Scholar
18.Okazaki, K. and Nagata, K., J. Am. Ceram. Soc. 56, 82 (1973).CrossRefGoogle Scholar
19.Zhang, L., Zhong, W.L., Wang, C.L., Zhang, P.L., and Wang, Y.G., J. Phys. D: Appl. Phys. 32, 546 (1999).CrossRefGoogle Scholar
20.Zhang, L., Zhong, W.L., Wang, C.L., Zhang, P.L., and Wang, Y.G., Phys. Status Solidi A 168, 543 (1998).3.0.CO;2-J>CrossRefGoogle Scholar
21.Chattopadhyay, S., Ayyub, P., Palkar, V.R., and Multani, M., Phys. Rev. B 52, 177 (1995).CrossRefGoogle Scholar
22.Park, Y., Lee, W-J., and Kim, H.G., J. Phys: Condens. Matter 9, 9445 (1997).Google Scholar
23.Lobo, R.P.S.M., Mohallem, N.D.S., and Moreira, L., J. Am. Ceram. Soc. 78(5), 1343 (1995).CrossRefGoogle Scholar
24.Setter, N. and Cross, L.E., J. Appl. Phys. 51, 4356 (1980).CrossRefGoogle Scholar
25.Cross, L.E., Ferroelectrics 76, 241 (1987).Google Scholar
26.Stumpe, R., Wagner, D., and Bauerle, D., Phys. Status Solidi A 75, 143 (1983).Google Scholar
27.Bidault, O., Goux, P., Kchikech, M., Belkaoumi, M., and Maglione, M., Phys. Rev. B 49, 7868 (1994).CrossRefGoogle Scholar
28.Baerwald, H.G., Phys. Rev. 105, 480 (1957).CrossRefGoogle Scholar
29.Berlincourt, D. and Krueger, H.H.A., J. Appl. Phys. 30, 1804 (1959).Google Scholar
30.Moulson, A.J. and Herbert, J.M., Electroceramics (Chapman and Hall, New York, 1990).Google Scholar
31.Land, C.E. and Peercy, P.S., Ferroelectrics 22, 677 (1978).Google Scholar
32.Brody, P.S., J. Solid State Chem. 12, 193 (1975).CrossRefGoogle Scholar
33.Grabar, A.A., Ferroelectrics 192, 155 (1997).CrossRefGoogle Scholar
34.Uchino, K. and Aizawa, M., Jpn. J. Appl. Phys. 24, S243139 (1985).Google Scholar