Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T17:15:30.088Z Has data issue: false hasContentIssue false

Polyimide/metal composite films via in situ decomposition of inorganic additives: Soluble polyimide versus polyimide precursor

Published online by Cambridge University Press:  31 January 2011

J. D. Rancourt
Affiliation:
Virginia Polytechnic Institute and State University, Department of Chemistry, Blacksburg. Virginia 24061-0699
G. M. Porta
Affiliation:
Virginia Polytechnic Institute and State University, Department of Chemistry, Blacksburg. Virginia 24061-0699
E. S. Moyer
Affiliation:
Virginia Polytechnic Institute and State University, Department of Chemistry, Blacksburg. Virginia 24061-0699
D. G. Madeleine
Affiliation:
Virginia Polytechnic Institute and State University, Department of Chemistry, Blacksburg. Virginia 24061-0699
L. T. Taylor
Affiliation:
Virginia Polytechnic Institute and State University, Department of Chemistry, Blacksburg. Virginia 24061-0699
Get access

Abstract

Polyimide-metal oxide (Co3O4 or CuO) composite films have been prepared via in situ thermal decomposition of cobalt (II) chloride or bis (trifluoroacetylacetonato) copper (II). A soluble polyimide (XU-218) and its corresponding prepolymer (polyamideacid) were individually employed as the reaction matrix. The resulting composites exhibited a greater metal oxide concentration at the air interface with polyamideacid as the reaction matrix. The water of imidization that is released during the concurrent polyamide acid cure and additive decomposition is believed to promote metal migration and oxide formation. In contrast, XU-218 doped with either HAuCl4 · 3H2O or AgNO3 yields surface gold or silver when themolyzed (300 °C).

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angelo, R. J. and DeNemours, E. I. DuPont and Co., “Electrically Conductive Polyimides,” United States Patent 3,073,785 (1959).Google Scholar
2Taylor, L. T. and Clair, A. K. St., in Polyimides, edited by Mittal, K. L. (Plenum, New York, 1984), Vol. 2, p. 617.Google Scholar
3Wohlford, T. L., Schaaf, J., Taylor, L. T., Furtsch, T. A., Khor, E., and Clair, A. K. St., in Conductive Polymers, edited by Seymour, R. B. (Plenum, New York, 1981), p. 7.CrossRefGoogle Scholar
4Ezzell, S. A., Furtsch, T. A., Khor, E., and Taylor, L. T., J. Polym. Sci. Polyrn. Chem. Ed. 21, 865 (1983).CrossRefGoogle Scholar
5Taylor, L. T. and Clair, A. K. St., J. Appl. Polym. Sci. 28, 2393 (1983).Google Scholar
6Taylor, L. T., Clair, A. K. St., and NASA Langley Research Center, “Aluminum Ion Containing Adhesives,” United States Patent 284,461 (1981).Google Scholar
7Boggess, R. K. and Taylor, L. T., J. Polym. Sci. Polym. Chem. Ed. 25, 685 (1987).CrossRefGoogle Scholar
8Rancourt, J. D., Boggess, R. K., Horning, L. S., and Taylor, L. T., J. Electrochem. Soc. 134, 85 (1987).CrossRefGoogle Scholar
9Portaand, G. M.Taylor, L. T., J. Mater. Res. 3, 211 (1988).Google Scholar
10Madeleine, D. G., Spillane, S. A., and Taylor, L. T., J. Vac. Sci. Technol. A 5, 347 (1987).CrossRefGoogle Scholar
11Madeleine, D. G., Ward, T. C., and Taylor, L. T., J. Polym. Chem. Polym. Phys. Ed. (to be published).Google Scholar
12Madeleine, D. G. and Taylor, L. T., in Recent Advances in Polyimide Science and Technology, edited by Weber, W. D. and Gupta, M. R., Mid-Hudson Chapter of the Society of Plastic Engineers, Inc., Poughkeepsie, NY (1987), p. 453.Google Scholar