Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T16:25:32.364Z Has data issue: false hasContentIssue false

Postdeposition annealing of NiOx thin films: A transition from n-type to p-type conductivity for short wave length optoelectronic devices

Published online by Cambridge University Press:  07 February 2013

Manisha Tyagi
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
Monika Tomar
Affiliation:
Physics Department, Miranda House, University of Delhi, Delhi 110007, India
Vinay Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
*
a)Address all correspondence to this author. e-mail: drguptavinay@gmail.com
Get access

Abstract

The present work highlights the effect of postdeposition annealing (373–773 K) on the tunability of electrical conductivity of radio frequency sputtered NiOx thin films with both n-type and p-type behavior. The NiOx thin films were polycrystalline with preferred (200) orientation with high optical transmission. The as-grown NiOx thin film exhibits an n-type behavior with room temperature resistivity of 4.80 × 10−3 Ω-cm and majority carrier (electrons) concentration of about 3.90 × 1020 cm−3. Film annealed at 473 K was p-type having resistivity of 1.54 × 10−1 Ω-cm and majority carrier (hole) concentration of about 4.45 × 1018 cm−3. Hall effect and thermoelectric power measurements confirm a transition in electrical conduction from n-type to p-type with postdeposition annealing at 473 K. The observed tunability of electrical conductivity of NiOx thin film will pave way toward realization of p-n homojunction for short wave length optoelectronic device applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fasaki, I., Giannoudakos, A., Stamataki, M., Kompitsas, M., György, E., Mihailescu, I.N., Roubani-Kalantzopoulou, F., Lagoyannis, A., and Harissopulos, S.: Nickel oxide thin films synthesized by reactive pulsed laser deposition: Characterization and application to hydrogen sensing. Appl. Phys. A 91, 487 (2008).CrossRefGoogle Scholar
2. Krishnakumar, S.R., Liberati, M., Grazioli, C., Veronese, M., Turchini, S., Luches, P., Valeri, S., and Carbone, C.: Magnetic linear dichroism studies of in situ grown NiO thin films. J. Magn. Magn. Mater. 310, 8 (2007).CrossRefGoogle Scholar
3. Liu, H., Zheng, W., Yan, X., and Feng, B.: Studies on electrochromic properties of nickel oxide thin films prepared by reactive sputtering. J. Alloys Compd. 462, 356 (2008).CrossRefGoogle Scholar
4. Tyagi, M., Tomar, M., and Gupta, V.: Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal. Chim. Acta 726, 93 (2012).CrossRefGoogle ScholarPubMed
5. Chen, X., Wu, N.J., Smith, L., and Ignatiev, A.: Thin-film heterostructure solid oxide fuel cells. Appl. Phys. Lett. 84, 2700 (2004).CrossRefGoogle Scholar
6. Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., and Marks, T.J.: p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105(8), 2783 (2007).CrossRefGoogle Scholar
7. Chan, I.M., Hsu, T.Y., and Hong, F.C.: Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81, 1899 (2002).CrossRefGoogle Scholar
8. Dutta, T., Gupta, P., Gupta, A., and Narayan, J.: High work function (p-type NiO1+x)/Zn0.95Ga0.05O heterostructures for transparent conducting oxides. J. Phys. D: Appl. Phys. 43, 105301 (2010).CrossRefGoogle Scholar
9. Dutta, T., Gupta, P., Gupta, A., and Narayan, J.: Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. J. Appl. Phys. 108(8), 083715 (2010).CrossRefGoogle Scholar
10. Alders, D., Voogt, F.C., Hibma, T., and Sawatzky, G.A.: Interface effects in the Ni 2p x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Phys. Rev. B 54(11), 7716 (1996).CrossRefGoogle Scholar
11. Chen, X., Ruan, K., Wu, G., and Bao, D.: Tuning electrical properties of transparent p-NiO/n-MgZnO heterojunctions with band gap engineering of MgZnO. Appl. Phys. Lett. 93, 112112 (2008).CrossRefGoogle Scholar
12. Long, H., Fang, G.J., Huang, H.H., Mo, X.M., Xia, W., Dong, B.Z., Meng, X.Q., and Zhao, X.Z.: Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes. Appl. Phys. Lett. 95(1), 013509 (2009).Google Scholar
13. Chu, S., Wang, G., Zhou, W., Lin, Y., Chernyak, L., Zhao, J., Kong, J., Li, L., Ren, J., and Liu, J.: Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6, 506 (2011).CrossRefGoogle ScholarPubMed
14. Lu, M.P., Song, J., Lu, M.Y., Chen, M.T., Gao, Y., Chen, L.J., and Wang, Z.L.: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223 (2009).CrossRefGoogle ScholarPubMed
15. Chen, M.T., Lu, M.P., Wu, Y.J., Song, J., Lee, C.Y., Lu, M.Y., Chang, Y.C., Chou, L.J., Wang, Z.L., and Chen, L.J.: Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 10, 4387 (2010).CrossRefGoogle ScholarPubMed
16. Wu, M.S. and Yang, C.H.: Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition. Appl. Phys. Lett. 91, 033109 (2007).CrossRefGoogle Scholar
17. Ryu, H.Y., Choi, G.P., Lee, W.S., and Park, J.S.: Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. J. Mater. Sci. Lett. 39, 4375 (2004).Google Scholar
18. Stamataki, M., Tsamakis, D., Brilis, N., Fasaki, I., Giannoudakos, A., and Kompitsas, M.: Hydrogen gas sensors based on PLD grown NiO thin film structures. Phys. Status Solidi A 205, 2064 (2008).CrossRefGoogle Scholar
19. Reinert, F., Steiner, P., Hiifner, S., Schmitt, H., Fink, J., Knupfer, M., Sand, P., and Bertel, P.E.: Electron and hole doping in NiO. Z. Phys. B: Condens. Matter 97, 83 (1995).CrossRefGoogle Scholar
20. Gupta, P., Dutta, T., Mal, S., and Narayan, J.: Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys. 111, 013706 (2012).CrossRefGoogle Scholar
21. Sato, H., Minami, T., Takata, S., and Yamada, T.: Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236, 27 (1993).CrossRefGoogle Scholar
22. Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 102.Google Scholar
23. Maniv, S., Westwood, W.D., and Colombini, E.: Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers. J. Vac. Sci. Technol., A 20, 162 (1982).CrossRefGoogle Scholar
24. Chen, H.L., Lu, Y.M., and Hwang, W.S.: Characterization of sputtered NiO thin films. Surf. Coat. Technol. 198, 138 (2005).CrossRefGoogle Scholar
25. Puspharajah, P., Radhakrishna, S., and Aroif, A.K.: Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 32, 3001 (1997).CrossRefGoogle Scholar
26. Subrahamanyam, N.A.: A Textbook of Optics, 9th ed. (Brj Laboratory, India, 1977).Google Scholar
27. Mendoza-Galván, A., Vidales-Hurtado, M.A., and López-Beltrán, A.M.: Comparison of the optical and structural properties of nickel oxide-based thin films obtained by chemical bath and sputtering. Thin Solid Films 517, 3115 (2009).CrossRefGoogle Scholar
28. Moss, T.S., Burrell, G.J., and Ellis, B.: Semiconductor Opto-Electronics (Wiley, New York, 1973).Google Scholar
29. Nakahata, K., Miida, A., Kamiya, T., Fortmann, C.M., and Shimizu, I.: Carrier transport, structure and orientation in polycrystalline silicon on glass. Thin Solid Films 337, 45 (1999).CrossRefGoogle Scholar
30. Cutler, M., Leavy, J.F., and Fitzpatrick, R.L.: Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143 (1964).CrossRefGoogle Scholar
31. Li, L., Fang, L., Zhou, X.J., Liu, Z.Y., Zhao, L., and Jiang, S.: X-ray photoelectron spectroscopy study and thermoelectric properties of Al-doped ZnO thin films. J. Electron. Spectrosc. Relat. Phenom. 173, 7 (2009).CrossRefGoogle Scholar
32. Tyagi, M., Tomar, M., and Gupta, V.: P-N junction of NiO thin film for photonic devices. IEEE Electron Device Lett 34, 1 (2013).CrossRefGoogle Scholar
33. Chowdhuri, A., Singh, S.K., Sreenivas, K., and Gupta, V.: Contribution of adsorbed oxygen and interfacial space charge for enhanced response of SnO2 sensors having CuO catalyst for H2S gas. Sens. Actuators, B 145, 155 (2010).CrossRefGoogle Scholar