Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-12T13:20:55.198Z Has data issue: false hasContentIssue false

Preparation and visible-light photocatalyst activity of nanometric-sized TiO2-xNy powders from a two-microemulsion process

Published online by Cambridge University Press:  31 January 2011

Wein-Duo Yang*
Affiliation:
Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan, Republic of China
Wen-Chung Lin
Affiliation:
Department of Environmental Engineering, Kun Shan University, Tainan 710, Taiwan, Republic of China
Chunhui Yang
Affiliation:
Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
Zen-Ja Chung
Affiliation:
Chemical Engineering Division, Institute of Nuclear Energy Research, Lungtan, Taoyuan 325, Taiwan, Republic of China
I-Lun Huang
Affiliation:
Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail: ywd@cc.kuas.edu.tw
Get access

Abstract

Nanometric-sized nitrogen-doped titanium oxide (TiO2-xNy) powders were synthesized by the two-microemulsion technology. The dried precursor precipitate was characterized by differential thermal analysis/thermogravimetric analysis, Raman spectroscopy, transmission electron microscopy, Brunauer-Emmet-Teller, and x-ray photoelectron spectrometer (XPS), and the mechanisms for the evolution of TiO2-xNy powders in this process were proposed and discussed in the context of the microstructure. It shows that a higher pH value solution results in obtaining a small size and much more homogeneous TiO2-xNy powder after calcinations. The powder prepared from a solution of pH 10–11 and calcined at 500 °C has a particle size of ∼4–6 nm with a specific surface area of 160 m2/g and exhibits a pure phase of anatase containing ∼5 mol% of N evidenced by XPS. However, the nanometric-sized TiO2-xNy powder shows the photocatalytic degradation of methylene blue solution effectively by exposing the powders in aqueous solution under visible light.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nogueria, A.F. and Paoli, M.A.D.: A dye sensitized TiO2 photo-voltaic cell constructed with an elastomeric electrolyte. Sol. Energy Mater. Sol. Cells 61, 135 (2000).CrossRefGoogle Scholar
2Khaselev, O. and Turner, J.A.: A monolithic photovoltaic-photoelectrochemical devices for hydrogen production via water splitting. Science 280, 425 (1998).CrossRefGoogle ScholarPubMed
3Kim, S.Y., Chang, T.S., Lee, D.K., and Shin, C.H.: Photocatalytic docomposition of methylene blue over nanosized titania particles. J. Ind. Eng. Chem. 2, 194 (2005).Google Scholar
4Jurek, K., Guglielmi, M., Kuncova, G., Renner, O., Lukes, F., Navratil, M., Krousky, E., Vorlicek, V., and Kokesova, K.: Characterization of TiO2 and ZrO2 coatings on silica slabs and fibres. J. Mater. Sci. 27, 2549 (1992).CrossRefGoogle Scholar
5So, W.W., Park, S.B., Kim, K.J., Shin, C.H., and Moon, S.J.: The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. J. Mater. Sci. 36, 4299 (2001).CrossRefGoogle Scholar
6Wang, J., Sun, J., and Bian, X.: Preparation of oriented TiO2 nano-belts by microemulsion technique. Mater. Sci. Eng., A 379, 7 (2004).CrossRefGoogle Scholar
7Chhabra, V., Pillai, V., Mishra, B.K., Morrone, A., and Shah, D.O.: Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 particles. Langmuir 11, 3307 (1995).CrossRefGoogle Scholar
8Livage, J., Sanchez, C., Henry, M., and Doeuff, S.: The chemistry of the sol-gel process. Solid State Ionics 32/33, 633 (1989).CrossRefGoogle Scholar
9Dhage, S.R., Pasricha, R., and Ravi, V.: Synthesis of ultrafine TiO2 by citrate gel method. Mater. Res. Bull. 38, 1623 (2003).CrossRefGoogle Scholar
10Kim, K.D. and Kim, H.T.: Synthesis of TiO2 nanoparticles by hydrolysis of TEOT and decrease of particle size using a two-stage mixed method. Powder Technol. 119, 164 (2001).CrossRefGoogle Scholar
11Shao, Z., Li, G., Xiong, G., and Yang, W.: Modified cellulose adsorption method for the synthesis of conducting perovskite powders for membrane application. Powder Technol. 122, 26 (2002).CrossRefGoogle Scholar
12Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
13Irie, H., Washizuka, S., Yoshino, N., and Hashimoto, K.: Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Chem. Commun. 1298 (2003).Google Scholar
14Yang, W.D., Zhu, H., Hsieh, C.S., Wei, T.Y., Chung, Z.J., and Ling, Y.H.: Applying the experimental statistical method to deal the preparatory conditions of nanometric-sized TiO2 powders from a two emulsions process. J. Eur. Ceram. Soc. 28, 1177 (2008).Google Scholar
15Doeuff, S., Henry, M., Sanchez, C., and Livage, J.: Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid. J. Non-Cryst. Solids 89, 206 (1987).CrossRefGoogle Scholar
16Xu, J.H., Dai, W.L., Li, J., Cao, Y., Li, H., He, H., and Fan, K.: Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation. Catal. Commun. 9, 146 (2008).CrossRefGoogle Scholar
17Belver, C., Bellod, R., Stewart, S.J., Requejo, F.G., and Fernández-Garciá, M.: Nitrogen-containing TiO2 photocatalysts. Part 2. Photocatalytic behavior under sunlight excitation. Appl. Catal., B 65, 309 (2006).CrossRefGoogle Scholar
18Xu, J.H., Li, J., Dai, W.L., Cao, Y., Li, H., and Fan, K.: Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response. Appl. Catal., B 79, 72 (2008).CrossRefGoogle Scholar
19Navio, J.A., Cerrillos, C., and Real, C.: Photo-induced transforma-2-tion, upon UV illumination in air, of hyponitrite species N2O2 preadsorbed on TiO2 surface. Surf. Interface Anal. 24, 355 (1996).3.0.CO;2-D>CrossRefGoogle Scholar
20Jang, J.S., Kim, H.G., Ji, S.M., Bae, S.W., Jung, J.H., Shon, B.H., and Lee, J.S.: Formation of crystalline TiO2-xNx and its photocatalytic activity. J. Solid State Chem. 179, 1067 (2006).CrossRefGoogle Scholar
21Suresh, C., Biju, V., Mukundan, P., and Warrier, K.G.K.: Anatase to rutile transformation in sol-gel titania by modification of precursor. Polyhedron 17, 3131 (1998).CrossRefGoogle Scholar
22Diaz-Guemes, M.I., Carreno, G., and Semna, C.J.: Mechanism of formation of MTiO3 (M=Sr or Ba) by the gel method. J. Math. Sci. 24, 1011 (1989).CrossRefGoogle Scholar
23Berger, H., Tang, H., and Lévy, F.: Growth and Raman spectro-scopic characterization of TiO2 anatase single crystals. J. Cryst. Growth 130, 108 (1993).CrossRefGoogle Scholar
24Zhang, J., Li, M., Feng, Z., Chen, J., and Li, C.: UV Raman spectro-scopic study on TiO2. I. Phase transformation at the surface and in the bulk. J. Phys. Chem. B 110, 927 (2006).CrossRefGoogle Scholar
25Gole, J.L., Stout, J.D., Burda, C., Lou, Y.B., and Chen, X.B.: Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 (2004).CrossRefGoogle Scholar
26Parks, G.A.: The isoelectric points of solid, oxides solid hydroxides and aqueous hydrous complex systems. Chem. Rev. 65, 177 (1965).CrossRefGoogle Scholar
27Riemsdijk, W.H. Van, Bolt, G.H., Koopal, L.K., and Blaakmeer, J.: Electrolyte adsorption on heterogeneous surfaces: Adsorption models. J. Colloid Interface Sci. 109, 219 (1986).CrossRefGoogle Scholar
28Spurr, R.A. and Myers, H.A.: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Chem. 29, 760 (1957).Google Scholar
29Zerkout, S., Achour, S., Mosser, A., and Tabet, N.: On the existence of superstructure in TiNx thin films. Thin Solid Films 441, 135 (2003).CrossRefGoogle Scholar
30Liu, B., Zhao, X., and Wen, L.: A simple route to the water-repellent surface based on chemical N modified Ti-O structure films. Surf. Coat. Technol. 201, 3606 (2006).CrossRefGoogle Scholar
31Wang, C.C. and Ying, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).CrossRefGoogle Scholar
32Li, G. and Gray, K.A.: Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem. Mater. 19, 1143 (2007).CrossRefGoogle Scholar
33Kosmulski, M., Dukhin, A.S., Priester, T., and Rosenholm, J.B.: Multilaboratory study of the shifts in the IEP of anatase at high ionic strengths. J. Colloid Interface Sci. 263, 152 (2003).CrossRefGoogle ScholarPubMed