Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-08-01T14:20:31.242Z Has data issue: false hasContentIssue false

Preparation of YBa2Cu3O7−x precursors from a fused eutectic of sodium and potassium hydroxides

Published online by Cambridge University Press:  31 January 2011

Nicholas Coppa
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122
Daniel H. Nichols
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122
John W. Schwegler
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122
J. E. Crow
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122
G. H. Myer
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122
R. E. Salomon
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122
Get access

Abstract

A method for preparing YBa2Cu3O7−x from the simultaneous thermal decomposition of the nitrates of yttrium, barium, and copper in an anhydrous fused eutectic of sodium and potassium hydroxide is described. This method eliminates the need for any mechanical grinding or the introduction of carbon containing anions. Products formed are fine powders (∼1 μm) having mole ratios 1.00Y:2.00Ba:3.06Cu.X-ray diffraction analyses reveal that the initial products are Y(OH)3, BaO2, and CuO, which when air calcinated/oxygen annealed at 900–950 °C form the superconducting YBa2Cu3O7−x A mechanism is postulated for product formation as a function of reaction conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kini, A. M.Geiser, U.Kao, H. I.Carlson, K. D.Wang, H. H.Monaghan, M. R. and Williams, J.M.Inorg. Chem. 26, 1834 (1987).CrossRefGoogle Scholar
2Johnson, S.M.Gusman, M.I. and Rowcliffe, D. J.Adv. Ceram. Mater. 2, 3B, 337 (1987).CrossRefGoogle Scholar
3Fujiki, M.Hikita, M. and Sukegawa, K.Jpn. J. Appl. Phys. 26, LI159 (1987).CrossRefGoogle Scholar
4Wang, X.Z.Henry, M.Livage, J. and Rosenman, I.Solid State Commun. 64, 881 (1987).Google Scholar
5Dunn, B.Chu, C.T.Zhon, L.W., Cooper, J.R. and Gruner, G.Adv. Ceram. Mater. 2, 343 (1987).Google Scholar
6Materials and Processing Report, edited by Ford, R. (MIT Press, Cambridge, MA, 1989), Vol. 3, 11/12.Google Scholar
7Ham, W. K.Holland, G. F. and Stacey, A. M.J. Am. Chem. Soc. 110, 5214 (1988).Google Scholar
8Claes, P. and Gilbert, J. in Molten Salt Techniques, edited by Lovering, D.G. and Gale, R.J. (Plenum Press, New York, 1983), Vol. 1, Chap. 4, pp. 79109.Google Scholar
9Wongng, W., McMurdie, H.F.Paretzkin, B.Hubbard, C. R.Dragoo, A. L. and Stewart, J.M.Powder Diffract. 2, 116 (1987).Google Scholar
10Wu, M. K.Ashburn, J. R.Torng, C. J.Hor, P. H.Meng, R. L.Gao, L.Huang, Z.J.Wang, Y. Q. and Chu, C.C.Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
11Hepp, A. F.Gaier, J. R.Philipp, W. H.Warner, J. D.Hambouger, P. D.Aron, P. R. and Pouch, J. J. in Processing and Applications of High Tc Superconductors, edited by Mayo, W. E. (Metallurgical Soc, 1988), p. 117.Google Scholar
12Weast, R.C.CRC Handbook of Chemistry and Physics, 66th ed. (Chemical Rubber Co., Cleveland, OH, 1985), pp. B76, B94, and B158.Google Scholar
13Coppa, N. and Salomon, R. E. (to be published).Google Scholar
14Tremillion, B. in Non-Aqueous Electrochemistry, edited by Marchon, J. C. (Butterworth's, London, 1971), pp. 395428.Google Scholar
15Vol'nov, I. I., Peroxides, Superoxides and Oionides of Alkali and Alkaline Earth Metals (Plenum Press, New York, 1966), Chap. 3.Google Scholar
16Hepp, A.F. and Gaier, J.R.Mater. Res. Bull. 23, 693 (1988).CrossRefGoogle Scholar