Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-15T03:41:28.573Z Has data issue: false hasContentIssue false

Preparation, thermal processing behavior, and characterization of YBCO from freeze-dried nitrate precursorsa)

Published online by Cambridge University Press:  31 January 2011

N.V. Coppa
Affiliation:
Exploratory Research and Development Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
G.H. Myer
Affiliation:
Center for Materials Science, Temple University, Philadelphia, Pennsylvania 19122
R.E. Salomon
Affiliation:
Center for Materials Science, Temple University, Philadelphia, Pennsylvania 19122
A. Bura
Affiliation:
Center for Materials Research and Technology, Florida State University, Tallahassee, Florida 32306-3016
J.W. O'Reilly
Affiliation:
Center for Materials Research and Technology, Florida State University, Tallahassee, Florida 32306-3016
J.E. Crow
Affiliation:
Center for Materials Research and Technology, Florida State University, Tallahassee, Florida 32306-3016
P.K. Davies
Affiliation:
Department of Materials Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Get access

Abstract

YBCO was synthesized using atomically mixed nitrate precursors. Atomic mixing was achieved using a freeze-dried process which is fully discussed here. The thermal processing behavior of these precursors is fundamentally different from that of mechanical mixtures of the Y, Ba, and Cu oxides and it is examined in detail. Ba2Cu3O5+x (normally considered a high oxygen pressure phase) and Y2O3 formed as nitrate decomposition products at ambient atmospheric conditions. Subsequent reaction of these materials (2 h at 925 °C) produced polycrystalline YBCO. Without any post-processing of the powders, product YBCO powders consisted of 30 μm agglomerates composed of crystals 1–3 μm on an edge. The powdered products exhibited a magnetic susceptibility greater than 90% – 1/4π.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Coppa, N., Bura, A., Schwegler, J. W., Salomon, R. E., Myer, G. H., and Crow, J. E., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 935.Google Scholar
2.Roehrig, K. F. and Wright, T. R., J. Vac. Sci. Technol. 9 (6), 13681372 (1972).CrossRefGoogle Scholar
3.Real, M. W., Br. Ceram. Proc. 38, 59 (1986).Google Scholar
4.Dogan, F. and Hausner, H., Ceram. Trans. 1 (Ceram. Powder Sci. 2, Pt. A), 127–134 (1988).Google Scholar
5.Johnson, S. M., Gussman, M. I., and Rowcliffe, D. J., Adv. Ceram. Mater. 2, 3B, 337 (1987).Google Scholar
6.Pham, M. Thi, Korman, R., and Morell, A., Ind. Ceram. (Paris) 863, 197 (1989).Google Scholar
7.Ito, T., Kimura, Y., and Hiraki, A., Jpn. J. Appl. Phys. 30, 1253 (1991).CrossRefGoogle Scholar
8.Coppa, N. V., Doctoral Thesis, Temple University (May 1990).Google Scholar
9.Chung, F. H., J. Appl. Cryst. 8, 17 (1975).CrossRefGoogle Scholar
10.Appleman, D. E. and Evans, H. T., Jr., U.S. Geological Survey Computer Contribution 20, U.S. National Technical Information Service Document PB2–16188.Google Scholar
11.Sturevant, J. M., in Physical Methods in Chemistry, edited by Weissberger, A. and Rossiter, B. W. (Wiley-Interscience, New York, 1971), Part V, Chap. 7, p. 366.Google Scholar
12.Luikov, A. V., Analytical Heat Diffusion Theory (Academic Press, 1968), p. 452, and references therein.Google Scholar
13.Taylor, T. J., Dollimore, D., and Gamlen, G. A., Thermochimica Acta 103, 333 (1986).CrossRefGoogle Scholar
14.Beretka, J. and Brown, T., J. Am. Ceram. Soc. 66, 383 (1983).CrossRefGoogle Scholar
15.Hulbert, S. F. and Klawitter, J. J., J. Am. Ceram. Soc. 50, 484 (1967).CrossRefGoogle Scholar
16.Coppa, N. V., Cooper, E. A., Peterson, E. J., and Smith, J. L., J. Am. Ceram. Soc, submitted (1991).Google Scholar
17.Lieberman, D. S., Los Alamos National Laboratory, private communication (1991).Google Scholar
18.Clem, J. R. and Kogan, V. G., Jpn. J. Appl. Phys. 26, 1161 (1987), Supplement 26–3.CrossRefGoogle Scholar
19.Batlogg, B., in High Temperature Superconductivity, Proceedings, The Los Alamos Symposium-1989, edited by Bedell, K. S., Coffey, D., Meltzer, D. E., Pines, D., and Schrieffer, J. R. (Addison- Wesley, Redwood, 1990), Chap. 2.Google Scholar
20.Kimura, Y., Ito, T., Yoshikawa, H., and Hiraki, A., Jpn. J. Appl. Phys. 30, L798 (1991).CrossRefGoogle Scholar
21.King, C. J. and Clark, J. P., “Water Removal Processes: Drying and Concentration of Foods and other Materials,” AICHE Symposium Series 73, 163 (1977).Google Scholar
22.Rowe, T. W. G., in Current Trends in Cryobiology, edited by Smith, A. U. (Plenum Press, New York, 1970), pp. 61138.CrossRefGoogle Scholar
23.Lambert, J. B. and Marshall, W. R., in Freeze Drying of Foods, edited by Fisher, F. R. (National Academy of Sciences-National Research Council, Washington, DC, 1962), pp. 105133.Google Scholar
24.Flosdorf, E. W., Freeze Drying (Reinhold, New York, 1949), pp. 1272.Google Scholar
25.Burke, J. E. and Rosolowski, J. H., in Treaties on Solid State Chemistry, edited by Hannay, N. B. (Plenum Press, New York, 1976), Vol. 4, Chap. 10.Google Scholar
26.Brosha, E. L., Sanchez, E., Davies, P. K., Coppa, N. V., Thomas, A. E., and Salomon, R. E., Physica C 184, 353 (1991).CrossRefGoogle Scholar
27.Ullman, J. E., McCallum, R. W., and Verhoeven, J. D., J. Mater. Res. 4, 752 (1989).CrossRefGoogle Scholar