Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-22T02:14:41.826Z Has data issue: false hasContentIssue false

Processing and microwave dielectric properties of barium magnesium tantalate ceramics for high-quality-factor personal communication service filters

Published online by Cambridge University Press:  31 January 2011

Seung-Hyun Ra
Affiliation:
Department of Materials Science and Engineering, 848 Benedum Engineering Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
Pradeep P. Phulé*
Affiliation:
Department of Materials Science and Engineering, 848 Benedum Engineering Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
*
a)Address all correspondence to this author.
Get access

Abstract

A modified route, based on calcined MgO, Ta2O5, BaCO3, and ZrO2, was developed and used for preparation of barium magnesium tantalate (BMT) and barium zirconate (BZ)-doped BMT ceramics (BZ-BMT). The dielectric constant for BMT ceramics sintered at 1600 °C for 2 h was 24.9 at 7.28 GHz. The average long-range ordering parameter for undoped BMT ceramics was 0.81 ± 0.03 and the coresponding average quality factor and resonant frequench product (Qd · fo) was 147,000 ± 3800 GHz. A significant level of B-site long-range cation disorder was introduced as a result of BZ doping of BMT ceramics. The average ordering parameters for 3 and 4 mol% BZ-doped BMT were found to be 0.69 ± 0.06 and 0.49 ± 0.13, respectively. The decrease in ordering parameters did not lead to a dramatic decrease in the corresponding average quality factors of 3 mol% BZ-BMT (Qd · fo = 127,000 ±3800 GHz) and 4 mol% BZ-BMT (Qd · fo = 139,000 ± 4200 GHz). The results suggest that the B-site cation ordering is not a primary factor that influences the observed microwave loss in BMT ceramics. The influence of atomic level point defects, induced from raw material impurities, processing, etc., may be more important in controlling the quality factor of BMT ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wireless Technologies and the National Information Infrastructure, Office of Technology Assessment, Report No. S/N 052–003–1421–1 OTA-ITC-622, Pittsburgh, PA, (1995).Google Scholar
2.Vittoria, C., Elements of Microwave Networks (World Scientific, Singapore, 1998).CrossRefGoogle Scholar
3.Konishi, Y., Microwave Electronic Circuit Technology (Marcel Dekker, New York, 1998).Google Scholar
4.Rhea, R.W., Handbook of Microwave Technology, edited by Ishii, T.K. (Academic Press, San Diego, 1995), p. 196.Google Scholar
5.Jiang, J.F., and Blair, W.D., IEEE Microwave Theory Techniques 46, 2493 (1998).Google Scholar
6.Phulé, P.P. and Risbud, S.H., in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 275.Google Scholar
7.Phulé, P.P. and Risbud, S.H., J. Mater. Sci. 25, 169 (1990).CrossRefGoogle Scholar
8.Negas, T., Yeager, G., Bell, S., and Coats, N., Ceram. Soc. Bull. 72(1), 80 (1993).Google Scholar
9.Wolfram, G. and Göbel, H.E., Mater. Res. Bull. 16, 1455 (1981).CrossRefGoogle Scholar
10.Khairulla, F. and Phulé, P.P., in Proceedings of the International Conference on Ceramic Powder Science, edited by Messing, G.L. (1991), pp. 725732.Google Scholar
11.Phule, P.P. and Khairulla, F., Mater. Sci. Eng. B 12, 327 (1991).Google Scholar
12.Wakino, K., Murata, M., and Tamura, H., J. Am. Ceram. Soc. 69(1), 34 (1986).CrossRefGoogle Scholar
13.Barber, D.J., Moulding, K.M., Zhou, J., and Li, M., J. Mater. Sci. 32, 1531 (1997).CrossRefGoogle Scholar
14.Chai, L., Akbas, M.A., Davies, P.K., and Parise, J.B., Mater. Res. Bull. 32, 1261 (1997).CrossRefGoogle Scholar
15.Chen, X.M., Suzuki, Y., and Sato, N., J. Mater. Sci. 5, 244 (1994).Google Scholar
16.Chen, X.M., and Wu, Y.J., J. Mater. Sci. Mater. Electronics 7, 369 (1996).Google Scholar
17.Katayama, S., and Sekine, M., J. Mater. Chem. 2(8), 889 (1992).CrossRefGoogle Scholar
18.Katayama, S., Yoshihaga, I., Yamada, N., and Nagai, T., J. Am. Ceram. Soc. 79, 2059 (1996).CrossRefGoogle Scholar
19.Kim, E.S. and Yoon, K.H., Ferroelectrics 133, 187 (1992).CrossRefGoogle Scholar
20.Kim, E.S., and Yoon, K.H., J. Mater. Sci. 29, 830 (1994).CrossRefGoogle Scholar
21.Kim, E.S. and Yoon, K.H., Ferroelectrics 154, 343 (1994).CrossRefGoogle Scholar
22.Matsumoto, K., Hiuga, T., Takada, K. and Ichimura, H., in Proceedings of the Sixth IEEE International Symposium on Application of Ferroelectrics (Institute of Electrical and Electronic Engineers, Bethlehem, PA, 1986).Google Scholar
23.Matsumoto, H., Tamura, H., and Wakino, K., J. Appl. Phys. 30, 2347 (1992).CrossRefGoogle Scholar
24.Nomura, S., Toyama, K., and Kaneta, K., Appl. Phys. 21(10), L624 (1982).Google Scholar
25.Renoult, O., Boilot, J.P., Chaput, F., Papiernik, R., and HubertPfalzgraf, L.G., J. Am. Ceram. Soc. 75, 3337 (1992).CrossRefGoogle Scholar
26.Ravichandran, D., Meyer, R. Jr, Roy, R., Guo, R., Bhalla, A.S., and Cross, L.E., Mater. Res. Bull. 31, 817 (1996).CrossRefGoogle Scholar
27.Renoult, O., Boilot, J.P., Chaput, F., Papiernik, R., Pfalzgraf, G.H., and Lejeune, M., in Ceramics Today–Tomorrow's Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers, London, 1991), pp. 19911997.Google Scholar
28.Sagala, D.A., and Koyasu, S., J. Am. Ceram. Soc. 76, 2433 (1993).CrossRefGoogle Scholar
29.Yoon, K.H., Kim, D.P., and Kim, E.S., J. Am. Ceram. Soc. 77, 1062 (1994).CrossRefGoogle Scholar
30.Youn, H.J., Kim, H.Y., and Kim, H., Jpn. J. Appl. Phys. 35, 3947 (1996).CrossRefGoogle Scholar
31.Zhou, J., Su, Q., Noulding, K.M., and Barber, D.J., J. Mater. Res. 12, 596 (1997).CrossRefGoogle Scholar
32.Zhou, J., Su, Q-X., Moulding, K.M., and Barber, D.J., J. Mater. Sci. Lett. 15, 1808 (1996).CrossRefGoogle Scholar
33.Schnoeller, M. and Wersing, W., in Processing Science of Advanced Ceramics, edited by Aksay, I.A., McVay, G.L., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA 1989), p. 45.Google Scholar
34.Schnoeller, M. and Wersing, W., Proceedings of the Second European Conference on Sol-Gel Technology, edited by Vilminot, S., Nass, R., and Schmidt, H. (Saarbrucken, North-Holland, Germany, 1991) Vol. 5.Google Scholar
35.Kawashima, S., Nishida, M., Ueda, I., and Quchi, H., J. Am. Ceram. Soc. 66, 421 (1983).CrossRefGoogle Scholar
36.Desu, S.B. and O'Bryan, H.M., J. Am. Ceram. Soc. 68, 546 (1985).CrossRefGoogle Scholar
37.Kawashima, S., Am. Ceram. Soc. Bull. 72(5), 120 (1993).Google Scholar
38.Tamura, H., Konoike, T., Sakabe, Y., and Wakino, K., Commun. Am. Ceram. Soc. 67(4), C59 (1984).CrossRefGoogle Scholar
39.Sugiyama, M., Inusuka, T., and Kubo, H., Ceram. Trans. 15, 153 (1989).Google Scholar
40.Yoon, K.H., Kim, D.P., and Kim, E.S., Ferroelectrics 154, 337 (1994).CrossRefGoogle Scholar
41.Vincent, H., Perrier, Ch., l'Heritier, Ph., and Labeyrie, M., Mat. Res. Bull. 28, 951 (1993).CrossRefGoogle Scholar
42.Davies, P.K., in Symposium on Materials and Processes for Wireless Communication (American Ceramic Society, Westerville, OH, 1995).Google Scholar
43.Courtney, W.E., IEEE Trans. MTT MTT-18 (8), 476 (1970).CrossRefGoogle Scholar
44.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (John Wiley & Sons, New York, 1991), p. 58.Google Scholar
45.Wersing, W., in Electronic Ceramics, edited by Steels, D.C.H (Elsevier, London, 1991), pp. 67115.Google Scholar
46.McHale, A.E. and Roth, R.S., J. Am. Ceram. Soc. 66, 1320 (1983).CrossRefGoogle Scholar