Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T09:38:13.994Z Has data issue: false hasContentIssue false

P-type conduction in room-temperature high-energy electron-irradiated ZnO thin films

Published online by Cambridge University Press:  31 January 2011

Eui-Jung Yun*
Affiliation:
Department of Semiconductor and Display Engineering, and Department of System and Control Engineering, Hoseo University, Asan, Chungnam, 336-795, Republic of Korea
Jeong Seog Kim
Affiliation:
Department of Semiconductor and Display Engineering, Hoseo University, Asan, Chungnam, 336-795, Republic of Korea
Byung Cheol Lee
Affiliation:
Laboratory for Quantum Optics, Korea Atomic Energy Research Institute, Daejeon, 305-353, Republic of Korea
*
a) Address all correspondence to this author. e-mail: ejyun@hoseo.edu
Get access

Abstract

We report the realization of the p-type conductivity and the enhancement of the photoluminescence (PL) intensity in undoped ZnO films treated with high-energy (1 MeV) electron-beam irradiation (HEEBI), suggesting that the HEEBI process is compatible with a low-temperature requirement for the fabrication of transparent thin film transistors with good efficiency on a plastic substrate. The p-type conductivity of the films was revealed by the Hall, x-ray photoelectron spectroscopy, and PL measurements after being electron-irradiated in air at room temperature. The major acceptor-like defects were determined to be oxygen interstitial and zinc vacancy. A model was proposed in terms of O as well as Zn diffusion to explain the observed results. It was also observed that HEEBI treatment has little influence on the optical transmittance of ZnO films, whereas HEEBI treatment shifts the optical band gap toward the lower energy region from 3.29 to 3.28 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cha, S.H., Oh, M.S., Lee, K.H., Im, S-I., Lee, B.H., and Sung, M.M.: Electrically stable low voltage ZnO transistors with organic/inorganic nanohybrid dielectrics. Appl. Phys. Lett. 92, 23506 (2008).CrossRefGoogle Scholar
2.Kang, D-H., Lim, H., Kim, C-J., Song, I-H., Park, J-C., Park, Y-S., and Chung, J-H.: Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Appl. Phys. Lett. 90, 192101 (2007).CrossRefGoogle Scholar
3.Lim, S.J., Kwon, S-J., Kim, H-J., and Park, J-S.: High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Appl. Phys. Lett. 91, 183517 (2007).CrossRefGoogle Scholar
4.Zeng, Y-J., Ye, Z-Z., Lu, J-G., Zhu, L-P., Li, D-Y., Zhao, B-H., and Huang, J-Y.: Effects of Al content on properties of Al–N codoped ZnO films. Appl. Surf. Sci. 249, 203 (2005).CrossRefGoogle Scholar
5.He, H.P., Zhuge, F., Ye, Z.Z., Zhu, L.P., Wang, F.Z., Zhao, B.H., and Huang, J.Y.: Strain and its effect on optical properties of Al–N codoped ZnO films., J. Appl. Phys. 99, 023503 (2006).CrossRefGoogle Scholar
6.Vaithianathan, V., Lee, B-T., Chang, C-H., Asokan, K., and Kim, S.S.: Characterization of as-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy. Appl. Phys. Lett. 88. 112103 (2006).CrossRefGoogle Scholar
7.Kang, H.S., Kim, G.H., Kim, D.L., Chang, H.W., Ahn, B.D., and Lee, S.Y.: Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film. Appl. Phys. Lett. 89, 181103 (2006).CrossRefGoogle Scholar
8.Hu, G., Gong, G.H., Chor, E.F., and Wu, P.: Properties of p-type and n-type ZnO influenced by P concentration. Appl. Phys. Lett. 89, 251102 (2006).CrossRefGoogle Scholar
9.Zeng, Y.J., Ye, Z.Z., Xu, W.Z., Liu, B., Che, Y., Zhu, L.P., and Zhao, B.H.: Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films. Mater. Lett. 61, 41 (2007).CrossRefGoogle Scholar
10.Yao, B., Guan, L.X., Xing, G.Z., Zhang, Z.Z., Li, B.H., Wei, Z.P., Wang, X.H., Cong, C.X., Xie, Y.P., Lu, Y.M., and Shen, D.Z.: P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering. J. Lumin. 122–123, 191 (2007).CrossRefGoogle Scholar
11.Lee, W-J., Kang, J., and Chang, K.J.: The origin of p-type conductivity in P-doped ZnO. J. Korean Phys. Soc. 50, 602 (2007).Google Scholar
12.Zhuge, F., Zhu, L.P., Ye, Z.Z., Lu, J.G., He, H.P., and Zhao, B.H.: Al concentration dependence of electrical and photoluminescent properties of co-doped ZnO films. Chem. Phys. Lett. 437, 203 (2007).CrossRefGoogle Scholar
13.Kong, D.H., Choi, W.C., Shin, Y.C., Park, J.H., and Kim, T.G.: Role of oxygen in green emission from ZnO thin films. J. Korean Phys. Soc. 48, 1214 (2006).Google Scholar
14.Yun, E-J., Park, H-S., Lee, K.H., Nam, H.G., and Jung, M.: Characterization of Al–As codoped p-type ZnO films by magnetron cosputtering deposition. J. Appl. Phys. 103, 73507 (2008).CrossRefGoogle Scholar
15.Wei, X.Q., Man, B.Y., Liu, M., Xue, C.S., Zhuang, H.Z., and Yang, C.: Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Physica B (Amsterdam) 388, 145 (2007).CrossRefGoogle Scholar
16.Xing, G.Z., Yao, B., Cong, C.X., Yang, T., Xie, Y.P., Li, B.H., and Shen, D.Z.: Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering. J. Alloys Compd. 457, 36 (2008).CrossRefGoogle Scholar
17.Amano, H., Kito, M., and Hiramatsu, K.: P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112 (1989).CrossRefGoogle Scholar
18.Vechten, J.A.V., Zook, J.D., Horning, R.D., and Goldenberg, B.: Defeating compensation in wide gap semiconductors by growing in H that is removed by low temperature de-ionizing radiation. Jpn. J. Appl. Phys. 31, 3662 (1992).CrossRefGoogle Scholar
19.Li, X. and Coleman, J.J.: Time-dependent study of low energy electron beam irradiation of Mg-doped GaN grown by metalor-ganic chemical vapor deposition. Appl. Phys. Lett. 69, 1605 (1996).CrossRefGoogle Scholar
20.Lee, D.U., Kim, E.K., Lee, B.C., and Oh, D.K.: Electrical and optical properties of a GaN n+-p junction with high-energy electron irradiation. J. Korean Phys. Soc. 50, 1904 (2007).CrossRefGoogle Scholar
21.Lee, D.U., Kim, E.K., Lee, B.C., and Oh, D.K.: Characterization of electron irradiated GaN n+-p diode. Thin Solid Films 516, 3482 (2008).CrossRefGoogle Scholar
22.Vlasenko, L.S. and Watkins, G.D.: Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO. Phys. Rev. B 71, 125210 (2005).CrossRefGoogle Scholar
23.Cullity, B.D.: Elements of X-ray Diffraction (Addison-Wesley, MA, 1978), p. 102.Google Scholar
24.Dai, L.P., Deng, H., Chen, J.J., and Wei, M.: Realization of the intrinsic p-type ZnO thin film by SSCVD. Solid State Commun. 143, 378 (2007).CrossRefGoogle Scholar
25.Lin, Y-J., Tsai, C-L., Lu, Y-M., and Liu, C-J.: Optical and electrical properties of undoped ZnO films. J. Appl. Phys. 99, 093501 (2006).CrossRefGoogle Scholar
26.Fan, D.H., Ning, Z.Y., and Jiang, M.F.: Characteristics and luminescence of Ge-doped ZnO films prepared by alternate radio frequency magnetron sputtering. Appl. Surf. Sci. 245, 414 (2005).CrossRefGoogle Scholar
27.Reshchikov, M.A., Morkoc, H., Nemeth, B., Nause, J., Xie, J., Hertog, B., and Osinsky, A.: Luminescence properties of defects in ZnO. Physica B (Amsterdam) 401–402, 358 (2007).CrossRefGoogle Scholar
28.Yun, E-J., Park, H-S., Cha, K-H., Lee, K.H., Cho, N-I., and Nam, H.G.: Effect of hydrogen peroxide on the stability of undoped p-type ZnO prepared by magnetron sputtering. J. Korean Phys. Soc. 52, 606 (2008).CrossRefGoogle Scholar
29.Xiong, G., Wilkinson, J., Mischuck, B., Tuzemen, S., Ucer, K.B., and Williams, R.T.: Control of p- and n-type conductivity in sputter deposition of undoped ZnO. Appl. Phys. Lett. 80, 1195 (2002).CrossRefGoogle Scholar
30.Tanemura, M., Hatano, H., Kudo, M., Ide, N., Fujimoto, Y., Miao, L., Yang, H.Y., Lau, S.P., Yu, S.F., and Kato, J.: Low-temperature fabrication and random laser action of doped zinc oxide nanoneedles. Surf. Sci. 601, 4459 (2007).CrossRefGoogle Scholar
31.Li, H., Liu, H., Wang, J., Yao, S., Cheng, X., and Boughton, R.I.: Influence of annealing on ZnO films grown by metal–organic chemical vapor deposition. Mater. Lett. 58, 3630 (2004).CrossRefGoogle Scholar
32.NIST XPS Database: Selected element search results. Available at: http://srdata.nist.gov/xps.Google Scholar
33.Kittel, C.: Introduction to Solid State Physics, 6th ed. (John Wiley and Sons, New York, 1986), p. 76.Google Scholar
34. Wacklepedia—The Free Encyclopedia: Available at: http://www.wacklepedia.com/z/zi/zinc.html.Google Scholar