Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-10-06T16:22:46.186Z Has data issue: false hasContentIssue false

Rapid thermal processing of lead zirconate titanate thin films on Pt–GaAs substrates based on a novel 1,1,1-tris(hydroxymethyl)ethane sol-gel route

Published online by Cambridge University Press:  31 January 2011

S. Arscott
Affiliation:
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, The University of Leeds, Leeds, LS2 9JT, United Kingdom
R. E. Miles
Affiliation:
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, The University of Leeds, Leeds, LS2 9JT, United Kingdom
J. D. Kennedy
Affiliation:
School of Chemistry, The University of Leeds, Leeds, LS2 9JT, United Kingdom
S. J. Milne
Affiliation:
School of Materials, The University of Leeds, Leeds, LS2 9JT, United Kingdom
Get access

Abstract

0.53Ti0.47)O3 have been prepared on platinized GaAs (Pt–GaAs) substrates using a new 1,1,1-tris(hydroxymethyl)ethane (THOME) based sol-gel technique. Rapid thermal processing (RTP) techniques were used to decompose the sol-gel layer to PZT in an effort to avoid problems of GayAs outdiffusion into the PZT. A crystalline PZT film was produced by firing the sol-gel coatings at 600 or 650 ° for a dwell time of 1 s using RTP. A single deposition of the precursor sol resulted in a 0.4 μm thick PZT film. X-ray diffraction measurements revealed that the films possessed a high degree of (111) preferred orientation. Measured average values of remanent polarization (Pr ) and coercive field (Ec) for the film annealed at 650 ° for 1 s were 24 μC/cm2 and 32 kV/cm, respectively, together with a low frequency dielectric constant and loss tangent at 1 kHz of 950 and 0.02. These values are comparable to those obtainable on platinized silicon (Pt–Si) substrates using conventional sol-gel methods, and are an improvement on PZT thin films prepared on platinized GaAs using an earlier sol-gel route based on 1,3-propanediol.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arscott, S., Awang, Z., Tu, Y. L., Milne, S. J., and Miles, R. E., Ferroelectrics 187, 49 (1996).CrossRefGoogle Scholar
2.Landolt-Börnstein New series: Ferroelectric and Antiferroelectric Substances, edited by K. H. Hellwege (Springer, Berlin, 1975), Vol. 9, p. 77.Google Scholar
3.Lakin, K. M. and Wang, J.S., Appl. Phys. Lett. 38, 125 (1981).CrossRefGoogle Scholar
4.Krishnaswamy, S.V., McAvoy, B.R. and Francombe, M.H., Physics of Thin Films: Thin Films in Microwave Acoustics, edited by Francombe, M. H. and Vossen, J. L. (Academic Press, Boston, 1993), Vol. 17, p. 196.Google Scholar
5.Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, edited by C. J. Brinker and G. W. Scherer (Academic Press, Boston, 1990).Google Scholar
6.Bozack, M. J., Williams, J. R., Ferraro, J. M., Feng, Z.C., and Jones, R. E. Jr, J. Electrochem. Soc. 142, 485 (1995).CrossRefGoogle Scholar
7.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2713 (1988).CrossRefGoogle Scholar
8.Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
9.Phillips, N. J., Calzada, M. L., and Milne, S. J., Brit. Pat. Appl. 9114476.6 (1991).Google Scholar
10.Sriprang, N., Kennedy, J. D., and Milne, S. J., J. Am. Ceram. Soc. (1997).Google Scholar
11.Arscott, S., Kurchania, R., Miles, R. E., and Milne, S. J., J. Mater. Sci. 32, 6129 (1997).CrossRefGoogle Scholar
12.Tu, Y. L. and Milne, S. J., J. Mater. Sci. 30, 2507 (1995).CrossRefGoogle Scholar
13.Spierings, G. A. C. M., van Zon, J. B. A., Klee, M., and Larsen, P. K., Proc. 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA, March 9–11 (1992).Google Scholar
14.Hirano, S., Yugo, T., Kikuta, K., Araki, Y., Saitoh, M., and Ogasahara, S., J. Am. Ceram. Soc. 75, 2785 (1992).CrossRefGoogle Scholar
15.Chen, S. and Chen, I., IMF Proc., August (1993).Google Scholar
16.Reaney, I. M., Brooks, K. G., Klissurska, R., Pawlaczyk, C., and Setter, N., J. Am. Ceram. Soc. 77, 1209 (1994).CrossRefGoogle Scholar
17.Kwok, C. K. and Desu, S. B., Appl. Phys. Lett. 60, 1430 (1992).CrossRefGoogle Scholar
18.Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).Google Scholar
19.Landolt-Börnstein New series: Semiconductors, edited by O. Madelung (Springer, New York, 1982), Vol. 17, p. 528.Google Scholar
20.Landolt-Börnstein New series: Semiconductors, edited by O. Madelung (Springer, New York, 1982), Vol. 17, p. 370.Google Scholar
21.Tuttle, B. A., Voigt, J. A., Garino, T. J., Gognow, D. C., Schwartz, R. W., Lamppa, D. L., Headly, T. J., and Eatough, M. O., Proc. 8th IEEE ISAF, 344348 (1992).Google Scholar
22.Chen, J., Udayakumar, K. R., Brooks, K. G., and Cross, L. E., J. Appl. Phys. 71, 4465 (1992).CrossRefGoogle Scholar
23.Vasant Kumar, C. V. R., Pascual, R., and Sayer, M., J. Appl. Phys. 71, 846 (1992).CrossRefGoogle Scholar
24.Atsuki, T., Soyama, N., Sasaki, G., Yonezawa, T., Ogi, K., Sameshima, K., Hoshiba, K., Nakao, Y., and Kamisawa, A., Jpn. J. Appl. Phys. 33, 5196 (1994).Google Scholar
25.Kim, C., Yoon, D. S., Lee, J. S., Choi, C. G., and No, K., Jpn. J. Appl. Phys. 33, 2675 (1994).Google Scholar
26.Lakeman, C. D. E., Ph.D. Thesis, University of Illinois, Urbana, IL (1994).Google Scholar