Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T15:32:34.547Z Has data issue: false hasContentIssue false

Reaction of NF3 and SF6 with some oxides connected with heavy-metal fluoride glass processing

Published online by Cambridge University Press:  31 January 2011

M. M. Broer
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
R. M. Atkins
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The fluorinating properties of NF3 and SF6 in heavy-metal fluoride glass processing were investigated between 200 and 1100 °C. Using infrared (IR) absorption spectroscopy the reactions of NF3 with ZrO2 and Al2O3 and the reactions of SF6 with ZrO2, SiO2, and Ni were studied. The reaction of NF3 with zirconia and alumina starts at 300 and 650 °C, respectively (yielding nitrogen oxides, nitrogen oxyfluoride, and presumably the metal fluorides). The reaction of SF6 and zirconia starts at 600 °C, yielding SO2F2. Sulfur hexafluoride and silica yield (above 900 °C) SiF4, SO2F2, and SOF2. Nickel and SF6 react above 700 °C yielding SF4 (and presumably NiF4). The results indicate that both gases are effective in oxide conversion at typical fluoride glass melting temperatures (800–900 °C). In addition NF3 can be used as a low-temperature fluorinating source for both oxide containing fluoride and pure oxide precursors. This offers great advantages over the use of solid NH4HF2, which is typically used and which forms an additional source of contamination.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Drexhage, M. G. in Treatise on Materials Science and Technology, edited by Tomozawa, M. and Doremus, R. H. (Academic, New York, 1985), Vol. 26; Mater. Sci. Forum 5, 1 (1985).Google Scholar
2Robinson, M.J. Cryst. Growth 75, 184 (1986).CrossRefGoogle Scholar
3France, P. W.Carter, S. F.Moore, M. W. and Williams, J. R.Electron. Lett. 21, 602 (1985).CrossRefGoogle Scholar
4Nakai, T.Mimura, Y.Tokiwa, H. and Shinbori, O.Electron. Lett. 21, 625 (1985).CrossRefGoogle Scholar
5Tran, D. C.Fisher, C. F.Levin, K. L. and Sigel, G. H. paper MC3, Proceedings of the Optical Fiber Communication Conference, 1983, and U.S. Patent No. 4, 539, 032.Google Scholar
6Robinson, M.Mater. Sci. Forum 5, 19 (1985).CrossRefGoogle Scholar
7Nakai, T.Mimura, Y.Shinbori, O. and Tokiwa, H.Jpn. J. Appl. Phys. 24, 1658 (1985); J. Lightwave Techn. LT-4, 87 (1986).CrossRefGoogle Scholar
8Tregoat, D.Fonteneau, G. and Lucas, J.Mater. Res. Bull. 20, 179 (1985).CrossRefGoogle Scholar
9Atkins, R. M. and Broer, M. M.J. Mater. Res. 3, 369 (1988).CrossRefGoogle Scholar
10Devillebichot, P. G.Glass Technol. 24, 139 (1983).Google Scholar
11Atkins, R. M.Broer, M. M. and Bruce, A. J.J. Mater. Res. 3, 781 (1988).CrossRefGoogle Scholar
12Waters, T. N.J. Inorg. Nucl. Chem. 15, 320 (1960).CrossRefGoogle Scholar
13Robinson, M. in Halide Glassesfor Infrared Fiberoptics, edited by Almeida, R. M. NATO ASI, Series E (Martinus Nijhoff, Dordrecht, 1987), Vol. 123.Google Scholar
14Anderson, R. E.Wall, E. M. Vander, and Schaplowsky, R. K. USAF Propellant Handbook, AFRPL-TR-77-71; Contract No. FO4611-76-C-0O58 (1977).Google Scholar
15Woltz, P. J. H.Jones, E. A. and Nielsen, A. H.J. Chem. Phys. 20, 378 (1952).CrossRefGoogle Scholar
16Reents, W. D. Jr. , Wood, D. L. and Mujsce, A. M.Anal. Chem. 57, 104 (1985).CrossRefGoogle Scholar
17Dodd, R. E.Woodward, L. A. and Roberts, H. L.Trans. Faraday Soc. 52, 1052 (1956).CrossRefGoogle Scholar
18Hunt, G. R. and Wilson, M. K.Spectrochim. Acta 16, 570 (1960).CrossRefGoogle Scholar
19Gillespieand, R. J.Robinson, E. A.Can. J. Chem. 39, 2171 (1961).CrossRefGoogle Scholar
20O'Loane, J. K. and Wilson, M. K.J. Chem. Phys. 23, 1313 (1955).CrossRefGoogle Scholar