Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T23:22:50.290Z Has data issue: false hasContentIssue false

Role of cohesive energy on the interparticle coalescence behavior of dispersed nanoparticles subjected to energetic ion irradiation

Published online by Cambridge University Press:  31 January 2011

Dambarudhar Mohanta*
Affiliation:
Nanoscience Laboratory, Department of Physics, Tezpur University, PO Napaam, Assam 784028, India
*
a)Address all correspondence to this author. e-mail: best@tezu.ernet.in
Get access

Abstract

The present work reports on the conditions of nanoparticle growth and splitting under energetic ion irradiation. Cohesive energy that determines the thermal stability of a given nanoparticle system was calculated by extending surface area difference (SAD) and liquid drop model (LDM). Based on the size-dependent cohesive energy calculations, the interparticle coalescence mechanism is discussed for a ZnS-based nanoparticle system with special reference to a variety of matrices. The interparticle separation is found to play key role in particle–particle coalescence leading to nanoparticle growth or partial evaporation that results in splitting.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kik, P.G., Polman, A.Exciton-erbium interactions in Si nanocrystal-doped SiO2. J. Appl. Phys. 88, 1992 (2000)Google Scholar
2.Gangopadhyaya, P., Kesavamoorthy, R., Nair, K.G.M., Dhandapani, R.Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing. J. Appl. Phys. 88, 4975 (2000)Google Scholar
3.Kluth, S.M., Fitz Gerald, J.D., Ridgway, M.C.Ion-irradiation-induced porosity in GaSb. Appl. Phys. Lett. 86, 131920 (2005)Google Scholar
4.Talapatra, S., Cheng, J-Y., Chakrapani, N., Trasobares, S., Cao, A., Vajtai, R., Bhuang, M., Ajayan, P.M.Ion irradiation induced structural modifications in diamond nanoparticles. Nanotechnology 17, 305 (2006)Google Scholar
5.Mishra, Y.K., Avasthi, D.K., Kulriya, P.K., Singh, F., Kabiraj, D., Tripathi, A., Pivin, J.C., Bayer, S., Biswas, A.Controlled growth of gold nanoparticles induced by ion irradiation: An in situ x-ray diffraction study. Appl. Phys. Lett. 90, 073110 (2007)CrossRefGoogle Scholar
6.Berthelot, A., Hemon, S., Gourbilleau, F., Dufour, C., Dooryhee, E., Paumier, E.Nanometric size effect on irradiation of tin oxide powder. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 443 (1998)CrossRefGoogle Scholar
7.Tateno, J.An empirical relation on melting temperature of some ionic crystals. Solid State Commun. 10, 61 (1972)Google Scholar
8.Qi, W.H., Wang, M.P.Size effect on the cohesive energy of nanoparticle. J. Mater. Sci. 21, 1743 (2002)Google Scholar
9.Qi, W.H.Generalized surface-area-difference model for cohesive energy of nanoparticles with different compositions. J. Mater. Sci. 41, 5679 (2006)CrossRefGoogle Scholar
10.Bre'chignac, C., Busch, H., Cahuzac, Ph., Leygnier, J.Dissociation pathways and binding energies of lithium clusters from evaporation experiments. J. Chem. Phys. 101, 6992 (1994)CrossRefGoogle Scholar
11.Nanda, K.K., Sahu, S.N., Behera, S.N.Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002)Google Scholar
12.Nemac, P., Maly, P.Temperature study of trap-related photoluminescence decay in CdSxSe1−x nanocrystals in glass. J. Appl. Phys. 87, 3342 (2000)CrossRefGoogle Scholar
13.Ando, M., Kanemitsu, Y., Kushida, T., Matsuda, K., Saiki, T., White, C.W.Sharp photoluminescence of CdS nanocrystals in Al2O3 matrices formed by sequential ion implantation. Appl. Phys. Lett. 79, 539 (2001)Google Scholar
14.Jang, H.D., Kim, S-K., Kim, S.-JinEffect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141 (2001)CrossRefGoogle Scholar
15.Huang, H-C., Huang, G-L., Chen, H-L., Lee, Y-D.Immobilization of TiO2 nanoparticles on carbon nanocapsules for photovoltaic applications. Thin Solid Films 511, 203 (2006)CrossRefGoogle Scholar
16.Mehta, G.K.Materials modification with high energy heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. A 382, 33 (1996)CrossRefGoogle Scholar
17.Nuclear Tracks in Solids edited by R.L. Fleischer, P.B. Price, and R.M. Walker (University of California Press, Berkeley, CA 1975)Google Scholar
18.Joseph, B., Ghatak, J., Lenka, H.P., Kuiri, P.K., Sahu, G., Mishra, N.C., Mohapatra, D.P.Effect of 100 MeV Au irradiation on embedded Au nanoclusters in silica glass. Nucl. Instrum. Methods Phys. Res., Sect. B 256, 659 (2007)CrossRefGoogle Scholar
19.Srivastava, S.K., Avasthi, D.K., Pippe, E.Swift heavy ion induced formation of nanocolumns of C clusters in a Si based polymer. Nanotechnology 17, 2518 (2006)CrossRefGoogle Scholar
20.Venables, J.A., Spiller, G.D.T., Hanbucken, M.Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984)CrossRefGoogle Scholar
21.Nanda, K.K.Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles. Appl. Phys. Lett. 87, 021909 (2005)CrossRefGoogle Scholar
22.Zeigler, J.F., Zeigler, M.D., Biersack, J.P.SRIM (2008)—The stopping and range of ions in matter. www.srim.org (2008)Google Scholar
23.Jiang, Q., Zhang, Z., Li, J.C.Superheating of nanocrystals embedded in matrix. Chem. Phys. Lett. 322, 549 (2000)CrossRefGoogle Scholar
24.Zhang, Z., Li, Z.C., Jiang, Q.Modelling for size-dependent and dimension-dependent melting of nanocrystals. J. Phys. D 33, 2653 (2000)Google Scholar
25.Jaffe, J.E., Pandey, R., Seel, M.J.Ab initio high-pressure structural and electronic properties of ZnS. Phys. Rev. B 47, 6299 (1993)CrossRefGoogle ScholarPubMed
26.Mohanta, D., Nath, S.S., Bordoloi, A., Choudhury, A., Dolui, S.K., Mishra, N.C.Optical absorption study of 100-MeV chlorine ion-irradiated hydroxyl-free ZnO semiconductor quantum dots. J. Appl. Phys. 92, 7149 (2002)Google Scholar
27.Mohanta, D., Mishra, N.C., Choudhury, A.SHI-induced grain growth and grain fragmentation effects in polymer-embedded CdS quantum dot systems. Mater. Lett. 58, 3194 (2004)CrossRefGoogle Scholar
28.Kluth, P., Giulian, R., Sprouster, D.J., Schnohr, C.S., Byrne, A.P., Cookson, D.J., Ridgway, M.C.Energy dependent saturation width of swift heavy ion shaped embedded Au nanoparticles. Appl. Phys. Lett. 94, 113107 (2009)CrossRefGoogle Scholar