Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-21T03:57:26.511Z Has data issue: false hasContentIssue false

Routes to self-assembly of nanorods

Published online by Cambridge University Press:  12 April 2013

Karthik Ramasamy*
Affiliation:
Center for Materials for Information Technology and Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487
Arunava Gupta*
Affiliation:
Center for Materials for Information Technology and Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487
*
a)Address all correspondence to these authors. e-mail: kramasamy@mint.ua.edu
Get access

Abstract

Self-assembled nanostructures often exhibit unique properties that are distinct from those of bulk materials. During the past decade, significant progress has been made in the assembly of nanorods and understanding some of the self-directing assembly mechanisms, particularly related to gold nanorods. Nonetheless, methods that can be scaled up to large areas for device-scale applications are yet to be established. This review describes various routes that are being actively pursued to achieve assembly of nanorods. Self-assembly methods that utilize external forces such as electric field or gravitational forces are reviewed. Additionally, self-assembly schemes using chemical and biomolecule linkers are presented. Other important routes, such as template assisted assembly, Langmuir-Blodgett, and nanorod assembly methods carried out in solution phase are also discussed. The latter includes recently reported approaches to produce superstructured particles through self-assembly. Solvent evaporation and drying can also strongly contribute to the assembly of nanostructures. The final section presents self-assembly routes that primarily exploit the drying kinetics of solvents.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xia, Y. and Yang, P.: Chemistry and physics of nanowires. Adv. Mater. 15, 351 (2003).CrossRefGoogle Scholar
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
Baughman, R.H., Zakhidov, A.A., and de Heer, W.A.: Carbon nanotubes–the route towards applications. Science 292, 787 (2002).CrossRefGoogle Scholar
Yao, Z., Kane, C.L., and Dekker, C.: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941 (2000).CrossRefGoogle ScholarPubMed
Sun, B. and Sirringhaus, H.: Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408 (2005).CrossRefGoogle ScholarPubMed
Hu, J., Li, L-S., Yang, W., Manna, L., Wang, L-W., and Alivisatos, A.P.: Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060 (2001).CrossRefGoogle ScholarPubMed
Gonzalez-Valls, I. and Lira-Cantu, M.: Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2, 19 (2009).CrossRefGoogle Scholar
Matsui, K., Kyotanni, T., and Tomita, A.: Hydrothermal synthesis of single-crystal Ni(OH)2 nanorods in a carbon-coated anodic alumina film. Adv. Mater. 14, 1216 (2002).3.0.CO;2-A>CrossRefGoogle Scholar
Shi, L., Pei, C., Xu, Y., and Li, Q.: Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Am. Chem. Soc. 133, 10328 (2011).CrossRefGoogle ScholarPubMed
Wooten, A.J., Werder, D.J., Williams, D.J., Casson, J.L., and Hollingsworth, J.A.: Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple and single-source precursors. J. Am. Chem. Soc. 131, 16177 (2009).CrossRefGoogle ScholarPubMed
Peng, H., Xie, C., Schoen, D.T., Mcllwrath, K., Zhang, X.F., and Cui, Y.: Ordered vacancy compounds and nanotube formation in CuInSe2-CdS core-shell nanowires. Nano Lett. 7, 3734 (2007).CrossRefGoogle Scholar
Steinhagen, C., Akhavan, V.A., Goodfellow, B.W., Panthani, M.G., Harris, J.T., Holmberg, V.C., and Korgel, B.A.: Solution-liquid-solid synthesis of CuInSe2 nanowires and their implementation in photovoltaic devices. ACS Appl. Mater. Interfaces 3, 1781 (2011).CrossRefGoogle ScholarPubMed
Wang, X. and Li, Y.: Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880 (2002).CrossRefGoogle Scholar
Whittaker, L., Jaye, C., Fu, Z., Fischer, D.A., and Banerjee, S.: Depressed phase transition in solution-grown VO2 nanostructures. J. Am. Chem. Soc. 131, 8884 (2009).CrossRefGoogle ScholarPubMed
Kwon, S.G. and Hyeon, T.: Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 41, 1696 (2008).CrossRefGoogle ScholarPubMed
Manna, L., Scher, E.C., and Alivisatos, A.P.: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).CrossRefGoogle Scholar
Baranov, D., Manna, L., and Kanaras, A.G.: Chemically induced self-assembly of spherical and anisotropic inorganic nanocrystals. J. Mater. Chem. 21, 16694 (2011).CrossRefGoogle Scholar
Sajanlal, P.R., Sreeprasad, T.S., Samal, A.K., and Pradeep, T.: Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2, 5883 (2011).CrossRefGoogle ScholarPubMed
Grzelczak, M., Vermant, J., Furst, E.M., and Liz-Marzan, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4, 3591 (2010).CrossRefGoogle ScholarPubMed
Liu, K., Zhao, N., and Kumacheva, E.: Self-assembly of inorganic nanorods. Chem. Soc. Rev. 40, 656 (2011).CrossRefGoogle ScholarPubMed
Li, L-S. and Alivisatos, A.P.: Origin and scaling of the permanent dipole moment in CdSe nanorods. Phys. Rev. Lett. 90, 9740297411 (2003).CrossRefGoogle ScholarPubMed
Ryan, K.M., Mastroianni, A., Stancil, K.A., Liu, H., and Alivisatos, A.P.: Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 6, 1479 (2006).CrossRefGoogle ScholarPubMed
Gupta, S., Zhang, Q., Emrick, T., and Russell, T.P.: Self-corralling nanorods under an applied electric field. Nano Lett. 6, 2066 (2006).CrossRefGoogle ScholarPubMed
Saeedi, E., Marcheselli, C., Shum, A., and Parviz, B.A.: Inertially assisted nanoscale self-assembly. Nanotechnology 21, 375604 (2010).CrossRefGoogle ScholarPubMed
Park, S., Lim, J-H., Chung, S-W., and Mirkin, C.A.: Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348 (2004).CrossRefGoogle ScholarPubMed
Lim, J-H., Ciszek, J.W., Huo, F., Jang, J-W., Hwang, S., and Mirkin, C.A.: Actuation of self-assembled two-component rod like nanostructures. Nano Lett. 8, 4441 (2008).CrossRefGoogle Scholar
Ciszek, J.W., Huang, L., Tsonchev, S., Wang, Y.H., Shull, K.R., Ratner, M.A., Schatz, G.C., and Mirkin, C.A.: Assembly of nanorods into designer superstructures: The role of templating, capillary forces, adhesion, and polymer hydration. ACS Nano 4, 259 (2010).CrossRefGoogle ScholarPubMed
Smith, B.D., Kirby, D.J., and Keating, C.D.: Vertical arrays of anisotropic particles by gravity-driven self-assembly. Small 7, 781 (2011).CrossRefGoogle ScholarPubMed
Orendorf, C.J., Hankins, P.L., and Murphy, C.J.: pH-triggered assembly of gold nanorods. Langmuir 21, 2022 (2005).CrossRefGoogle Scholar
Fava, D., Winnik, M.A., and Kumacheva, E.: Photothermally-triggered self-assembly of gold nanorods. Chem. Commun. 2571 (2009).CrossRefGoogle ScholarPubMed
Thomas, K.G., Barazzouk, S., Ipe, B.I., Joseph, S.T.S., and Kamat, P.V.: Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B 108, 13066 (2004).CrossRefGoogle Scholar
Ni, W., Mosquera, R.A., Perez-Juste, J., and Liz-Marzan, L.M.: Evidence for hydrogen-bonding-directed assembly of gold nanorods in aqueous solution. J. Phys. Chem. Lett. 1, 1181 (2010).CrossRefGoogle Scholar
Joseph, S.T.S., Ipe, B.I., Pramod, P., and Thomas, K.G.: Gold nanorods to nanochains: Mechanistic investigations on their longitudinal assembly using α, ω-alkanedithiols and interplasmon coupling. J. Phys. Chem. B 110, 150 (2006).CrossRefGoogle Scholar
Sreeprasad, T.S., Samal, A.K., and Pradeep, T.: One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. Langmuir 24, 4589 (2008).CrossRefGoogle ScholarPubMed
Kawamura, G., Yang, Y., and Nogami, M.: End-to-end assembly of CTAB-stabilized gold nanorods by citrate anions. J. Phys. Chem. C 112, 10632 (2008).CrossRefGoogle Scholar
Selvakannan, P.R., Dumas, E., Dumur, F., Pechoux, C., Beaunier, P., Etcheberry, A., Secheresse, F., Remita, H., and Mayer, C.R.: Coordination chemistry approach for the end-to-end assembly of gold nanorods. J. Colloid Interface Sci. 349, 93 (2010).CrossRefGoogle ScholarPubMed
Zhao, N., Liu, K., Greener, J., Nie, Z., and Kumacheva, E.: Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. Nano Lett. 9, 3077 (2009).CrossRefGoogle ScholarPubMed
Zhao, N., Vickery, J., Guerin, G., Park, J.I., Winnik, M.A., and Kumacheva, E.: Self-assembly of single-tip metal-semiconductor nanorods in selective solvents. Angew. Chem. Int. Ed. 50, 4606 (2011).CrossRefGoogle ScholarPubMed
Nagaoka, Y., Wang, T., Lynch, J., LaMontagne, D., and Cao, Y.C.: Binary assembly of colloidal semiconductor nanorods with spherical metal nanoparticles. Small 8, 843 (2012).CrossRefGoogle ScholarPubMed
Kang, C-C., Lai, C-W., Peng, H-C., Shyue, J-J., and Chou, P-T.: 2D self-bundled CdS nanorods with micrometer dimension in the absence of an external directing process. ACS Nano 2, 750 (2008).CrossRefGoogle ScholarPubMed
Xue, C., Birel, O., Gao, M., Zhang, S., Dai, L., Urbas, A., and Li, Q.: Perylene monolayer protected gold nanorods: Unique optical, electronic properties and self-assemblies. J. Phys. Chem. C 116, 10396 (2012).CrossRefGoogle Scholar
Kim, F., Kwan, S., Akana, J., and Yang, P.: Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123, 4360 (2001).CrossRefGoogle ScholarPubMed
Barano, D., Fiore, A., Huis, M.V., Giannini, C., Falqui, A., Lafont, U., Zandbergen, H., Zanella, M., Cingolani, R., and Manna, L.: Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett. 10, 743 (2010).CrossRefGoogle Scholar
Melby, P., Prevost, A., Egolf, D.A., and Urbach, J.S.: Depletion force in a bidisperse granular layer. Phys. Rev. E 76, 051307 (2007).CrossRefGoogle Scholar
Oosawa, F. and Asakua, S.: Surface tension of high-polymer solutions. J. Chem. Phys. 22, 1255 (1954).CrossRefGoogle Scholar
Ramasamy, K., Zhang, X., Bennett, R.D., and Gupta, A.: Synthesis, photoconductivity and self-assembly of wurtzite phase Cu2CdxZn1-xSnS4 nanorods. RSC Adv. 3, 1186 (2013).CrossRefGoogle Scholar
Zhung, J.Q., Wu, H.M., Yang, Y.G., and Cao, Y.C.: Controlling colloidal superparticle growth through solvophobic interactions. Angew. Chem. Int. Ed. 47, 2208 (2008).CrossRefGoogle Scholar
Wang, T., LaMontagne, D., Lynch, J., Zhuang, J., and Cao, Y.C.: Colloidal superparticles from nanoparticles assembly. Chem. Soc. Rev. doi: 10.1039/c2cs35318k.Google Scholar
Zhung, J., Shaller, A.D., Lynch, J., Wu, H., Chen, O., Li, A.D.Q., and Cao, Y.C.: Cylindrical superparticles from semiconductor nanorods. J. Am. Chem. Soc. 131, 6084 (2009).CrossRefGoogle Scholar
Wang, T., Zhuang, J., Lynch, J., Chen, O., Wang, Z., Wang, X., LaMontagne, D., Wu, H., Wang, Z., and Cao, Y.C.: Self-assembled colloidal superparticles from nanorods. Science 338, 358 (2012).CrossRefGoogle ScholarPubMed
Dujardin, E., Hsin, L-B., Wang, C.R.C., and Mann, S.: DNA-driven self-assembly of gold nanorods. Chem. Commun. 1264 (2001).CrossRefGoogle Scholar
Green, N.M.: Avidin. Adv. Protein Chem. 29, 85 (1975).CrossRefGoogle ScholarPubMed
Caswell, K.K., Wilson, J.N., Bunz, U.H.F., and Murphy, C.J.: Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 125, 13914 (2003).CrossRefGoogle ScholarPubMed
Chang, J-Y., Wu, H., Chen, H., Ling, Y-C., and Tan, W.: Oriented assembly of Au nanorods using biorecognition system. Chem. Commun. 1092 (2005).CrossRefGoogle ScholarPubMed
Wang, C., Chen, Y., Wang, T., Ma, Z., and Su, Z.: Biorecognition-driven self-assembly of gold nanorods: A rapid and sensitive approach toward antibody sensing. Chem. Mater. 19, 5809 (2007).CrossRefGoogle Scholar
Pan, B., Ao, L., Gao, F., Tian, H., He, R., and Cui, D.: End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 16, 1776 (2005).CrossRefGoogle Scholar
Salant, A., Amitay-Sadovsky, E., and Banin, U.: Directed self-assembly of gold-tipped CdSe nanorods. J. Am. Chem. Soc. 128, 10006 (2006).CrossRefGoogle ScholarPubMed
Nakashima, H., Furukawa, K., Kashimura, Y., and Torimitsu, K.: Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids. Langmuir 24, 5654 (2008).CrossRefGoogle ScholarPubMed
Wang, Y., Li, Y.F., Wang, J., Sanga, Y., and Huang, C.Z.: End-to-end assembly of gold nanorods by means of oligonucleotide–mercury(II) molecular recognition. Chem. Commun. 46, 1332 (2010).CrossRefGoogle ScholarPubMed
Walker, D.A. and Gupta, V.K.: Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide. Nanotechnology 19, 435603 (2008).CrossRefGoogle ScholarPubMed
Jain, T., Roodbeen, R., Reeler, N.E.A., Vosch, T., Jensen, K.J., Bjørnholm, T., and Nørgaard, K.: End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control. J. Colloid Interface Sci. 376, 83 (2012).CrossRefGoogle ScholarPubMed
Nikoobakht, B., Wang, Z.L., and El-Sayed, M.A.: Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635 (2000).CrossRefGoogle Scholar
Li, L., Walda, J., Manna, L., and Alivisatos, A.P.: Semiconductor nanorod liquid crystals. Nano Lett. 2(6), 557 (2002).CrossRefGoogle Scholar
Li, L-S. and Alivisatos, A.P.: Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 15(5), 408 (2003).CrossRefGoogle Scholar
Li, Y., Li, X., Yang, C., and Li, Y.: Ligand-controlling synthesis and ordered assembly of ZnS nanorods and nanodots. J. Phys. Chem. B 108, 16002 (2004).CrossRefGoogle Scholar
Talapin, D.V., Shevchenko, E.V., Murray, C.B., Kornowski, A., Förster, S., and Weller, H.: CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 126, 12984 (2004).CrossRefGoogle ScholarPubMed
Ghezelbash, A., Koo, B., and Korgel, B.A.: Self-assembled stripe patterns of CdS nanorods. Nano Lett. 6(8), 1832 (2006).CrossRefGoogle ScholarPubMed
Ahmed, S. and Ryan, K.M.: Self-assembly of vertically aligned nanorod supercrystals using highly oriented pyrolytic graphite. Nano Lett. 7(8), 2480 (2007).CrossRefGoogle ScholarPubMed
Wang, J., Khoo, E., Lee, P.S., and Ma, J.: Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112, 14306 (2008).CrossRefGoogle Scholar
Zhang, X. and Imae, T.: Perpendicular superlattice growth of hydrophobic gold nanorods on patterned silicon substrates via evaporation-induced self-assembling. J. Phys. Chem. C 113, 5947 (2009).CrossRefGoogle Scholar
Pietrobon, B., McEachran, M., and Kitaev, V.: Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3(1), 21 (2009).CrossRefGoogle ScholarPubMed
Nobile, C., Carbonel, L., Fiore, A., Cingolani, R., Manna, L., and Krahne, R.: Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. J. Phys. Condens. Matter 21, 264013 (2009).CrossRefGoogle ScholarPubMed
Singh, A., Gunning, R.D., Sanyala, A., and Ryan, K.M.: Directing semiconductor nanorod assembly into 1D or 2D supercrystals by altering the surface charge. Chem. Commun. 46, 7193 (2010).CrossRefGoogle ScholarPubMed
Yi, L., Tang, A., Niu, M., Han, W., Houb, Y., and Gao, M.: Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods. Cryst. Eng. Comm. 12, 4124 (2010).CrossRefGoogle Scholar
Sánchez-Iglesias, A., Grzelczak, M., Pérez-Juste, J., and Liz-Marzán, L.M.. Binary self-assembly of gold nanowires with nanospheres and nanorods. Angew. Chem. Int. Ed. 49, 9985 (2010).CrossRefGoogle ScholarPubMed
Xie, Y., Guo, S., Ji, Y., Guo, C., Liu, X., Chen, Z., Wu, X., and Liu, Q.: Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol. Langmuir 27, 11394 (2011).CrossRefGoogle Scholar
Hung, A.M., Konopliv, N.A., and Cha, J.N.: Solvent-based assembly of CdSe nanorods in solution. Langmuir 27, 12322 (2011).CrossRefGoogle ScholarPubMed
Ng, K.C., Udagedara, I.B., Rukhlenko, I.D., Chen, Y., Tang, Y., Premaratne, M., and Cheng, W.: Free-standing plasmonic-nanorod superlattice sheets. ACS Nano 6(1), 925 (2012).CrossRefGoogle ScholarPubMed
Singh, A., Gunning, R.D., Ahmed, S., Barrett, C.A., English, N.J., Garate, J-A., and Ryan, K.M.: Controlled semiconductor nanorod assembly from solution: influence of concentration, charge and solvent nature. J. Mater. Chem. 22, 1562 (2012).CrossRefGoogle Scholar
Querner, C., Fischbein, M.D., Heiney, P.A., and Drndic, M.: Millimeter-scale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics. Adv. Mater. 20, 2308 (2008).CrossRefGoogle Scholar
Zanella, M., Gomes, R., Povia, M., Giannini, C., Zhang, Y., Riskin, A., Bael, M.V., Hens, Z., and Manna, L.: Self-assembled multilayers of vertically aligned semiconductor nanorods on device-scale areas. Adv. Mater. 23, 2205 (2011).CrossRefGoogle ScholarPubMed