Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-12T09:17:37.092Z Has data issue: false hasContentIssue false

Self-organized TiO2 nanotube arrays by anodization of Ti substrate: Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response

Published online by Cambridge University Press:  31 January 2011

A. Watcharenwong
Affiliation:
National Research Center for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok, Thailand
W. Chanmanee
Affiliation:
National Research Center for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok, Thailand
N.R. de Tacconi
Affiliation:
Center for Renewable Energy Science and Technology (CREST), Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019
C.R. Chenthamarakshan
Affiliation:
Center for Renewable Energy Science and Technology (CREST), Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019
P. Kajitvichyanukul
Affiliation:
Department of Environmental Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
K. Rajeshwar*
Affiliation:
Center for Renewable Energy Science and Technology (CREST), Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019
*
a)Address all correspondence to this author. e-mail: rajeshwar@uta.edu
Get access

Abstract

This study probes the relationship between the morphology of anodic titania (TiO2) layers grown on Ti foil substrates and their subsequent photoelectrochemical response in 0.5 M Na2SO4 supporting electrolyte. The effects of anodization variables (voltage and time) and anodization medium composition [water, glycerol, poly(ethylene glycol), ethylene glycol] along with fluoride ion concentration on the oxide layer of morphology and photoresponse are described. The degree of order of the self organized TiO2 nanotube arrays and the extent to which these arrays organize themselves over the entire substrate surface are key variables dictating the corresponding quality of the resultant photoresponse.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Masuda, H., Nishio, K.Baba, N.: Fabrication of porous titania films using two-step replication of microstructure of anodic alumina. Jpn. J. Appl. Phys. 31, L1775 1992CrossRefGoogle Scholar
2Hoyer, P.: Formation of a titanium dioxide nanotube array. Langmuir 12, 1411 1996CrossRefGoogle Scholar
3Holland, B.T., Blanford, C.F.Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538 1998CrossRefGoogle ScholarPubMed
4Wijnhoven, J.E.G.J.Vos, W.L.: Preparation of photonic crystals made of air spheres in titania. Science 281, 802 1998CrossRefGoogle ScholarPubMed
5Imai, H., Takei, Y., Shimizu, K., Matsuda, M.Hirashima, H.: Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9, 2971 1999CrossRefGoogle Scholar
6Cameron, M.A., Gartland, I.P., Smith, J.A., Diaz, S.F.George, S.M.: Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes. Pore reduction and effect of surface species on gas transport. Langmuir 16, 7435 2000CrossRefGoogle Scholar
7Tatsuma, T., Ikezawa, A., Ohko, Y., Miwa, T., Matsue, T.Fujishima, A.: Microstructured TiO2 templates for the preparation of size-controlled Bryopsis protoplasts as cell models. Adv. Mater. 12, 643 20003.0.CO;2-7>CrossRefGoogle Scholar
8Matsumoto, Y., Ishikawa, Y., Nishida, M.Li, S.: A new electrochemical method to prepare mesoporous titanium(IV) oxide photocatalyst fixed on alumite substrate. J. Phys. Chem. B 104, 4204 2000CrossRefGoogle Scholar
9Zhang, X.Y., Zhang, L.D., Chen, W., Meng, G.W., Zheng, M.J., Zhao, L.X.Phillipp, F.: Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays. Chem. Mater. 13, 2511 2001CrossRefGoogle Scholar
10Uchida, S., Chiha, R., Tamiha, M., Masaki, N.Shirai, M.: Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry 70, 418 2002CrossRefGoogle Scholar
11de Tacconi, N.R.Rajeshwar, K.: Semiconductor nanostructures in an alumina template matrix: Micro- versus macro-scale photoelectrochemical behavior. Electrochim. Acta 47, 2603 2002CrossRefGoogle Scholar
12Harada, M.: Study of photocatalytic reaction of TiO2 using TiO2/Au mosaic electrode arrays. Electrochem. Solid-State Lett. 8, E27 2005CrossRefGoogle Scholar
13Rajeshwar, K., de Tacconi, N.R.Chenthamarakshan, C.R.: Spatially directed electrosynthesis of semiconductors for photoelectrochemical applications. Curr. Opin. Solid State Mater. Sci. 8, 173 2004CrossRefGoogle Scholar
14Kobayashi, S., Hanabusa, K., Hamasaki, N., Kimura, M.Shirai, H.: Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem. Mater. 12, 1523 2000CrossRefGoogle Scholar
15Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T.Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 1998CrossRefGoogle Scholar
16Chen, Q., Zhou, W., Du, G.Peng, L-M.: Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208 20023.0.CO;2-0>CrossRefGoogle Scholar
17Lee, J-H., Leu, I-C., Hsu, M-C., Chung, Y-W.Hon, M-H.: Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B 109, 13056 2005CrossRefGoogle ScholarPubMed
18Wu, J-J.Yu, C-C.: Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 108, 3377 2004CrossRefGoogle Scholar
19Tian, Z.R., Voigt, J.A., Liu, J., Mckenzie, B.Xu, H.: Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 125, 12384 2003CrossRefGoogle Scholar
20Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 1990CrossRefGoogle Scholar
21Lehmann, V.Göselle, U.: Porous silicon formation: A quantum wire effect. Appl. Phys. Lett. 58, 856 1991CrossRefGoogle Scholar
22Masuda, H.Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 1995CrossRefGoogle ScholarPubMed
23Jessensky, O., Muller, F.Göselle, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 1998CrossRefGoogle Scholar
24Zwilling, V., Aucouturier, M.Darque-Ceretti, E.: Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta 45, 921 1999CrossRefGoogle Scholar
25Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z.Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 2001CrossRefGoogle Scholar
26Beranek, R., Hildebrand, H.Schmuki, P.: Self-Organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 2003CrossRefGoogle Scholar
27Macak, J.M., Sirotna, K.Schmuki, P.: Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta 50, 3679 2005CrossRefGoogle Scholar
28Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K.Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 2006CrossRefGoogle Scholar
29Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 2007CrossRefGoogle Scholar
30Macak, J.M., Tsuchiya, H., Ghicov, A.Schmuki, P.: Dye-sensitized anodic TiO2 nanotubes. Electrochem. Commun. 7, 1133 2005CrossRefGoogle Scholar
31Adachi, M., Murata, Y., Okada, L.Yoshikawa, S.: Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488 2003CrossRefGoogle Scholar
32Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K.Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 2006CrossRefGoogle ScholarPubMed
33Paulose, M., Shankar, K., Varghese, O.K., Mor, G.K.Grimes, C.A.: Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D Appl. Phys. 39, 2498 2006CrossRefGoogle Scholar
34Zhu, K., Neale, N.R., Miedaner, A.Frank, A.: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 2007CrossRefGoogle ScholarPubMed
35de Tacconi, N.R., Chenthamarakshan, C.R., Yogeeswaran, G., Watcharenwong, A., de Zoysa, R.S., Basit, N.A.Rajeshwar, K.: Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: Influence of process variables on morphology and photoelectrochemical response. J. Phys. Chem. B 110, 25347 2006CrossRefGoogle ScholarPubMed
36Cai, Q., Paulose, M., Varghese, O.K.Grimes, C.A.: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 2005CrossRefGoogle Scholar
37Ruan, C., Paulose, M., Varghese, O.K.Grimes, C.A.: Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte. Sol. Energy Mater. Sol. Cells 90, 1283 2006CrossRefGoogle Scholar
38Beranek, R., Tsuchiya, H., Sugishima, T., Macak, J.M., Taveira, L., Fujimoto, S., Kisch, H.Schmuki, P.: Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 87, 243114 2005CrossRefGoogle Scholar
39Tsuchiya, H., Macak, J.M., Ghicov, A., Taveira, L.Schmuki, P.: Self-organized porous TiO2 and ZrO2 produced by anodization. Corros. Sci. 47, 3324 2005CrossRefGoogle Scholar
40Macak, J.M., Tsuchiya, H.Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. Engl. 44, 2100 2005CrossRefGoogle ScholarPubMed
41Tsuchiya, H., Macak, J.M., Taveira, L., Balaur, E., Ghicov, A., Sirotna, K.Schmuki, P.: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 7, 576 2005CrossRefGoogle Scholar
42Mishra, K.K.Rajeshwar, K.: A re-examination of the mechanisms of electrodeposition of CdX and ZnX (X = Se, Te) semiconductors by the cyclic photovoltammetric technique. J. Electroanal. Chem. 273, 169 1989CrossRefGoogle Scholar
43Zhou, M., Lin, W-Y., de Tacconi, N.R.Rajeshwar, K.: Metal/semiconductor electrocomposite photoelectrodes: Behavior of Ni/TiO2 photoanodes and comparison of photoactivity of anatase and rutile modifications. J. Electroanal. Chem. 402, 221 1996CrossRefGoogle Scholar
44Rajeshwar, K.: Electron transfer at semiconductor-electrolyte interfaces, in Electron Transfer in Chemistry edited by V. Balzani Wiley-VCH Weinheim 2001Google Scholar
45Khan, S.U.M., Al-Shahry, M., Ingler, W.B. Jr.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 2002CrossRefGoogle ScholarPubMed
46Mor, G.K., Shankar, K., Varghese, O.K.Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989 2004CrossRefGoogle Scholar
47Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K.Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 2005CrossRefGoogle ScholarPubMed
48Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K.Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158 2005CrossRefGoogle ScholarPubMed
49Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A.Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110, 16179 2006CrossRefGoogle ScholarPubMed
50Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K.Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 2007CrossRefGoogle Scholar
51Wahl, A.Augustynski, J.: Charge-carrier transport in nanostructured anatase TiO2 films assisted by the self-doping of nanoparticles. J. Phys. Chem. B 102, 7820 1998CrossRefGoogle Scholar
52Somasundaram, S., Tacconi, N., Chenthamarakshan, C.R., Rajeshwar, K.de Tacconi, N.R.: Photoelectrochemical behavior of composite metal oxide semiconductor films with a WO3 matrix and occluded Degussa P 25 TiO2 particles. J. Electroanal. Chem. 557, 167 2005CrossRefGoogle Scholar
53Shen, Q., Sato, T., Hashimoto, M., Chen, C.Toyoda, T.: Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films 499, 299 2006CrossRefGoogle Scholar
54Wolcott, A., Kuykendall, T.R., Chen, W., Chen, S.Zhang, J.Z.: Synthesis and characterization of ultrathin WO3 nanodiscs utilizing long-chain poly(ethylene glycol). J. Phys. Chem. B 110, 25288 2006CrossRefGoogle Scholar
55Zou, G., Xiong, K., Jiang, C., Li, H., Wang, Y., Zhang, S.Qian, Y.: Magnetic Fe3O4 nanodisc synthesis on a large scale via surfactant-assisted process. Nanotechnology 16, 1584 2005CrossRefGoogle Scholar
56Miki, T., Nishizawa, K., Suzuki, K.Kato, K.: Preparation of thick TiO2 film with large surface area using aqueous sol with poly(ethylene glycol). J. Mater. Sci. 39, 699 2004CrossRefGoogle Scholar
57Santato, C., Odziemkowski, M., Ulmann, M.Augustynski, J.: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 2001CrossRefGoogle ScholarPubMed
58Macak, J.M.Schmuki, P.: Anodic growth of self-organized TiO2 nanotubes in viscous electrolytes. Electrochim. Acta 52, 1258 2006CrossRefGoogle Scholar