Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-10T04:14:10.046Z Has data issue: false hasContentIssue false

Shock-induced reaction synthesis (SRS) of nickel aluminides

Published online by Cambridge University Press:  31 January 2011

N.N. Thadhani
Affiliation:
Center for Explosives Technology Research (CETR), New Mexico Tech, Socorro, New Mexico 87801
S. Work
Affiliation:
Center for Explosives Technology Research (CETR), New Mexico Tech, Socorro, New Mexico 87801
R.A. Graham
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
W.F. Hammetter
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Shock-induced chemical reactions between nickel and aluminum powders (mixed in Ni3Al stoichiometry) are used for the synthesis of nickel aluminides. It is shown that the extent of shock-induced chemical reactions and the nature of the shock-synthesized products are influenced by the morphology of the starting powders. Irregular (flaky type) and fine morphologies of the powders undergo complete reactions in contrast to partial reactions occurring in coarse and uniform morphology powders under identical shock loading conditions. Furthermore, irregular morphology powders result in the formation of the equiatomic (B2 phase) NiAl compound while the Ni3Al (L12 phase) compound is the reaction product with coarse and regular morphology powders. Shock-induced reaction synthesis can be characterized as a bulk reaction process involving an intense “mechanochemical” mechanism. It is a process in which shock compression induces fluid-like plastic flow and mixing, and enhances the reactivity due to the introduction of defects and cleansing of particle surfaces, which strongly influence the synthesis process.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley, New York, 1967).Google Scholar
2.Pope, D. P., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 310.Google Scholar
3.Vedula, K. and Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 381390.Google Scholar
4.Stoloff, N. S., Inter. Mater. Rev. 34 (4), 153 (1989).CrossRefGoogle Scholar
5.Fleischer, R. L., Dimiduk, D. M., and Lipsitt, H. A., Annu. Rev. Mater. Sci. 19, 231 (1989).CrossRefGoogle Scholar
6.Cahn, R. W., MRS Bulletin XVI, 1823 (1991).CrossRefGoogle Scholar
7.Massalski, T. B., Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1987).Google Scholar
8.Robinson, P. M. and Bewer, M. B., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley, New York, 1967), p. 38.Google Scholar
9.Enomi, K. and Nenno, S., Metall. Trans. 2, 1487 (1971).CrossRefGoogle Scholar
10.Au, Y. K. and Wayman, C. M., Scripta Metall. 6, 1209 (1972).CrossRefGoogle Scholar
11.Graham, R. A., Morosin, B., Venturini, E. L., and Carr, M. J., Annu. Rev. Mater. Sci. 16, 315 (1986).CrossRefGoogle Scholar
12.Dremin, A. N. and Bruesov, O. N., Russ. Chem. Rev. 37 (5), 392 (1968).CrossRefGoogle Scholar
13.Thadhani, N. N., Adv. Mater. Manuf. Proc. 3 (4), 493 (1988).Google Scholar
14.Sawaoka, A., in Sci. Am. (Jap. ed.) 11, 25 (1984). (in Japanese)Google Scholar
15.Chao, E. C. T., Science 156, 192 (1967).CrossRefGoogle Scholar
16.DeCarli, P. S. and Jamieson, J. C., Science 133, 821 (1961).CrossRefGoogle Scholar
17.Milton, D. J. and DeCarli, P. S., Science 140, 670 (1963).CrossRefGoogle Scholar
18.Graham, R. A., Morosin, B., and Dodson, B., The Chemistry of Shock Compression: A Bibliography, Sandia National Laboratories Report No. SAND83–1887 (1983).Google Scholar
19.Shock Compression Chemistry in Materials Synthesis and Processing,” National Materials Advisory Board, NMAB-414, National Academy Press, Washington, DC (1984).Google Scholar
20.Graham, R. A., Morosin, B., Horie, Y., Venturini, E. L., Boslough, M., Carr, M., and Williamson, D. L., in Shock Waves in Condensed Matter, edited by Gupta, Y. M. (Plenum Press, New York, 1986), pp. 693 and 749.CrossRefGoogle Scholar
21.Graham, R. A., in Shock Waves in Condensed Matter–1987, edited by Schmidt, S. C. and Holmes, N. C. (North Holland, 1988), p. 11.Google Scholar
22.Horie, Y., Graham, R. A., and Simonsen, I. K., Mater. Lett. 3 (9,10), 354 (1985).CrossRefGoogle Scholar
23.Horie, Y., Graham, R. A., and Simonsen, I. K., in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by Murr, L. E., Staudhammer, K. P., and Meyers, M. A. (Marcel Dekker, Inc., New York, 1986), p. 1023.Google Scholar
24.Benjamin, J. S., Metall. Trans. 1, 2943 (1970).CrossRefGoogle Scholar
25.Benjamin, J. S., Sci. Am. 234, 40 (1976).CrossRefGoogle Scholar
26.Sundaresan, R. and Froes, F. H., J. Metals 8, 22 (1987).Google Scholar
27.Schwarz, R. B. and Nash, P., J. Metals 1, 27 (1989).Google Scholar
28.Nash, P., Higgins, G. T., Dillinger, N., Huang, S. J., and Kim, H., Advances in Powder Metallurgy–1989 (MPIF, Princeton, 1989), Vol. 2, p. 473.Google Scholar
29.Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
30.Proc. of Solid State Amorphization Transformations, edited by Schwarz, R. B. and Johnson, W. L. (Elsevier Publications, Lausanne, 1988).Google Scholar
31.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
32.Merzhanov, A. G., Archiv. Combustion 1, 23 (1981).Google Scholar
33.Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277365 (1989).CrossRefGoogle Scholar
34.Borovinskaya, I. P., Vishniakov, G. A., Maslov, V. M., and Merzhanov, A. G., in Combustion Processes in Chemical Technology and Metallurgy (Moscow, 1975), p. 141.Google Scholar
35.Bose, A., Rabin, B. H., and German, R. M., Powder Met. Inter. 20 (3), 2530 (1988).Google Scholar
36.Bose, A., Moore, B., German, R. M., and Stoloff, N. S., J. Metals 40 (9), 1417 (1988).Google Scholar
37.Philpot, K. A., Munir, Z. A., and Holt, J. B., J. Mater. Sci. 22, 159 (1987).CrossRefGoogle Scholar
38.Naiborodenko, Y. S., Itin, V. I., and Savitskii, K. V., Sov. Phys. J. 11, 19 and 89 (1968).CrossRefGoogle Scholar
39.Holt, J. B. and Munir, Z., J. Mater. Sci. 21, 251 (1986).CrossRefGoogle Scholar
40.Sims, D. M., Bose, A., and German, R. M., Prog. Powder Met. 43, 575 (1987).Google Scholar
41.Atzmon, M. J., “Formation of Nickel Aiuminides by Mechanical Alloying”, in Proc. of TMS Symposium on Solid State Powder Processing, Indianapolis, IN, October 1–5, 1989, edited by Clauer, A. H. and deBarbadillo, J. J. (TMS, 1989), pp. 173180.Google Scholar
42.Ivanov, E., Grigorieva, T., Boldyrev, G. V., Fasman, A. B., Mikhailenko, S. D., and Kalinina, O. T., Mater. Lett. 7, 51 (1988).CrossRefGoogle Scholar
43.Batsanov, S. S., Doronin, G. S., Klochkov, S. V., and Teut, A. I., Combustion, Explosion and Shock Waves 22, 765 (1986).CrossRefGoogle Scholar
44.Graham, R. A. and Webb, D. M., in Shock Waves in Condensed Matter–1985, edited by Gupta, Y. M. (Plenum Press, New York, 1986), p. 831.CrossRefGoogle Scholar
45.Thadhani, N. N., Mutz, A. H., Kasiraj, P., and Vreeland, T. Jr, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by Murr, L. E., Staudhammer, K. P., and Meyers, M. A. (Marcel Dekker, Inc., New York, 1023, 1986), p. 247.Google Scholar
46.Thadhani, N. N., Vreeland, T., Jr., and Ahrens, T. J., J. Mater. Sci. 22, 4446 (1987).CrossRefGoogle Scholar
47.Simonsen, I. K., Horie, Y., Graham, R. A., and Carr, M. J., Mater. Lett. 5, 75 (1987).CrossRefGoogle Scholar
48.Hammetter, W. F., Graham, R. A., Morosin, B., and Horie, Y., in Shock Waves in Condensed Matter, edited by Schmidt, S. C. and Holmes, N. C. (North-Holland, 1987), p. 431.Google Scholar
49.Song, I. and Thadhani, N. N., Metall. Trans. A 23A, 4148 (1992).CrossRefGoogle Scholar
50.Graham, R. A., in Proc. of 3rd Int. Symp. on High Dynamic Pressures, LaGrande Motte, France, June 5–9, 175 (1989).Google Scholar