Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-15T23:42:23.503Z Has data issue: false hasContentIssue false

Silver nanoparticles for printable electronics and biological applications

Published online by Cambridge University Press:  23 February 2011

Dan V. Goia*
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699
*
a) Address all correspondence to this author. e-mail: goiadanv@clarkson.edu
Get access

Abstract

An environmentally friendly route to prepare stable concentrated aqueous dispersions of silver nanoparticles is described. It was found that Arabic gum, a well known stabilizing agent, can also rapidly and completely reduce Ag2O to metallic silver in alkaline solutions (pH > 12.0) and elevated temperature (65 °C). The average size of the silver nanoparticles could be tailored from 10 to 30 nm by varying the experimental conditions. By hydrolyzing either enzymatically or chemically the polysaccharide, it was possible to isolate dispersed silver nanoparticles suitable for both biological and printable electronics applications. For the latter purpose, concentrated dispersions of silver particles were prepared and used for depositing thin uniform layers, which could be sintered into conductive films at low temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K. and Kaneda, K.: Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angew. Chem. Int. Ed. Engl. 47, 144 (2008)CrossRefGoogle ScholarPubMed
2Xu, R., Wang, D., Zhang, J. and Li, Y.: Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 1, 888 (2006)CrossRefGoogle ScholarPubMed
3Ren, X., Meng, X., Chen, D., Tang, F. and Jiao, J.: Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 21, 433 (2005)CrossRefGoogle Scholar
4Lee, K.S. and El-Sayed, M.A.: Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220 (2006)CrossRefGoogle ScholarPubMed
5Velicov, K.P., Zegers, G.E. and Blaaderen, A. von: Synthesis and characterization of large colloidal silver particles. Langmuir 19, 1384 (2003)CrossRefGoogle Scholar
6Kreibig, U.: Electronic properties of small silver particles: The optical constants and their temperature dependence. J. Phys. F: Met. Phys. 4, 999 (1974)CrossRefGoogle Scholar
7Lin, J.C. and Wang, C.Y.: Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Mater. Chem. Phys. 45, 136 (1996)CrossRefGoogle Scholar
8Galletto, P., Brevet, P.F., Girault, H.H., Antoine, R. and Broyer, M.: Enhancement of the second harmonic response by adsorbates on gold colloids: The effect of aggregation. J. Phys. Chem. B 103, 8706 (1999)CrossRefGoogle Scholar
9Nam, J.M., Park, S.J. and Mirkin, C.A.: Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc. 124, 3820 (2002)CrossRefGoogle ScholarPubMed
10Wei, H., Li, J., Wang, Y.L. and Wang, E.K.: Silver nanoparticles coated with adenine: Preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology 18, 175610 (2007)CrossRefGoogle Scholar
11Anderson, D.J. and Moskovits, M.: A SERS-active system based on silver nanoparticles tethered to a deposited silver film. J. Phys. Chem. B 110, 13722 (2006)CrossRefGoogle ScholarPubMed
12Sondi, I. and Salopek-Sondi, B.: Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177 (2004)CrossRefGoogle Scholar
13Kumar, A., Vemula, P.K., Ajayan, P.M. and John, G.: Silver-nano-particle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236 (2008)CrossRefGoogle ScholarPubMed
14Goia, D.V.: Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J. Mater. Chem. 14, 451 (2004)CrossRefGoogle Scholar
15Chou, K.S. and Ren, C.Y.: Synthesis of nanosized silver particles by chemical reduction method. Mater. Chem. Phys. 64, 241 (2000)CrossRefGoogle Scholar
16Cushing, B.L., Kolesnichenko, V.L. and Connor, C.J.O.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893 (2004)CrossRefGoogle ScholarPubMed
17Li, X., Zhang, J., Xu, W., Jia, H., Wang, X., Yang, B., Zhao, B., Li, B. and Ozaki, Y.: Mercaptoacetic acid-capped silver nanoparticles colloid: Formation, morphology, and SERS activity. Langmuir 19, 4285 (2003)CrossRefGoogle Scholar
18Goia, D.V. and Matijevic, E.: Preparation of monodispersed metal particles. New J. Chem. 22, 1203 (1998)CrossRefGoogle Scholar
19Matijevic, E.: Uniform inorganic colloid dispersions: Achievements and challenges. Langmuir 10, 8 (1994)CrossRefGoogle Scholar
20Silvert, P.Y., Herrera-Urbina, R., Duvauchelle, N., Vijayakrishnan, V. and Tekaia-Elhsissen, K.: Preparation of colloidal silver dispersions by the polyol process. Part 1—Synthesis and characterization. J. Mater. Chem. 6, 573 (1996)CrossRefGoogle Scholar
21Silvert, P.Y., Herrera-Urbina, R. and Tekaia-Elhsissen, K.: Preparation of colloidal silver dispersions by the polyol process. J. Mater. Chem. 7, 293 (1997)CrossRefGoogle Scholar
22Porel, S., Singh, S., Harsh, S.S., Rao, D.N. and Radhakrishnan, T.P.: Nanoparticle-embedded polymer: In situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem. Mater. 17, 9 (2005)CrossRefGoogle Scholar
23Karthikeyan, B., Anija, M. and Philip, R.: In situ synthesis and nonlinear optical properties of Au: Ag nanocomposite polymer films. Appl. Phys. Lett. 88, 0531043 (2006)CrossRefGoogle Scholar
24Bhattacharjee, R.R., Chakraborty, M. and Mandal, T.K.: Synthesis of size-tunable gold nanoparticles by poly (vinylphenol) and electrostatic multilayer deposition of the gold-poly (vinylphenol) nanocomposites. J. Nanosci. Nanotechnol. 4, 844 (2004) 25. Raveendran, P., Fu, J., and Wallen, S.L.: Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 12513940 (2003)CrossRefGoogle ScholarPubMed
26Saito, Y., Wang, J.J., Smith, D.A. and Batchelder, D.N.: A simple chemical method for the preparation of silver surfaces for efficient SERS. Langmuir 18, 2959 (2002)CrossRefGoogle Scholar
27Priyabrata, M., Anmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parishcha, R., Ajaykumar, P.V., Alam, M., Kumar, R. and Sastry, M.: Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 1, 515 (2001)Google Scholar
28Allen, G.L., Bayles, R.A., Gile, W.W. and Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986)CrossRefGoogle Scholar
29Evanoff, D.D. and Chumanov, G.: Size-controlled synthesis of nanoparticles. 1. “Silver-only” aqueous suspensions via hydrogen reduction. J. Phys. Chem. B 108, 13948 (2004)CrossRefGoogle Scholar
30Panigrahi, S., Kundu, S., Ghosh, S., Nath, S. and Pal, T.: General method of synthesis for metal nanoparticles. J. Nanopart. Res. 6, 411 (2004)CrossRefGoogle Scholar
31Wang, T., Hu, X. and Dong, S.: Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy. J. Phys. Chem. B 110, 16930 (2006)CrossRefGoogle ScholarPubMed
32Murray, C.B., Norris, D.J. and Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 (1993)CrossRefGoogle Scholar
33Doome, R.J., Fonseca, A., Richter, H., Nagy, J.B., Thiry, P.A. and Lucas, A.A.: Purification of C60 by fractional crystallization. J. Phys. Chem. Solids 58, 1839 (1997)CrossRefGoogle Scholar
34Fischer, C.H., Weller, H., Fojtik, A., Lume-Pereira, C., Janata, E. and Henglein, A.: Exclusion chromatography and stop flow experiments on the formation of extremely small CdS particles. Ber. Bunsen. Phys. Chem. 90, 46 (1986)CrossRefGoogle Scholar
35Murray, C.B. and Kagan, C.R.: Synthesis and characterization of monodisperse nanocrystals and close packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000)CrossRefGoogle Scholar
36Andreescu, D., Eastman, C., Balantrapu, K. and Goia, D.V.: A simple route for manufacturing highly dispersed silver nanoparticles. J. Mater. Res. 22, 2488 (2007)CrossRefGoogle Scholar
37Connolly, S., Fenyo, J.C. and Vandervelde, M.C.: Effect of a proteinase on the macromolecular distribution of Acacia senegal gum. Carbohyd. Polym. 8, 23 (1988)Google Scholar
38Tischer, C.A., Gorin, P.A.J. and Iacomini, M.: The free reducing oligosaccharides of gum arabic: Aids for structural assignments in the polysaccharide. Carbohyd. Polym. 47, 151 (2002)Google Scholar
39Defaye, J. and Wong, E.: The exudate polysaccharide from Acacia senegal. Carbohydr. Res. 150, 221 (1986)CrossRefGoogle Scholar
40Osman, M.E., Williams, P.A., Menzies, A.R. and Phillips, G.O.: Characterization of commercial samples of gum arabic. J. Agric. Food Chem. 41, 71 (1993)CrossRefGoogle Scholar
41Bunton, C.A.: Glycol Cleavage and Related Reactions: Oxidation in Organic Chemistry, edited by Wiberg, K.B. (Academic Press Inc., New York, 1965), pp. 367, 369.Google Scholar
42Rogers, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L. and Hussain, S.M.: A preliminary assessment of silver nanoparticle inhibition of monkey pox virus plaque formation. Nanoscale Res. Lett. 3, 129 (2008)CrossRefGoogle Scholar
43Schrand, A.M., Braydich-Stolle, L.K., Schlager, J.J., Dai, L. and Hussain, S.M.: Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19, 235104 (2008)CrossRefGoogle ScholarPubMed
44Murdock, R.C.,Stolle, L.B.,A.M.Schrand,Schlager, J.J. and Hussain, S.M.: Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 101, 239 (2008)CrossRefGoogle ScholarPubMed
45Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S.M., Schlager, J.J. and Hong, Y.: DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233, 404 (2008)CrossRefGoogle ScholarPubMed