Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-08-01T17:13:57.275Z Has data issue: false hasContentIssue false

Solvothermal synthesis and luminescence of nearly monodisperse LnVO4 nanoparticles

Published online by Cambridge University Press:  26 April 2011

Xin Liang
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
Simin Kuang
Affiliation:
Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
Yadong Li*
Affiliation:
Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: ydli@tsinghua.edu.cn
Get access

Abstract

A facile ethylene glycol–based solvothermal method was developed for the synthesis of lanthanide orthovanadate LnVO4 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Tm, Yb, Lu) nanoparticles with relatively uniform size and morphologies. The LnVO4 nanoparticles ranged from 100 to 500 nm and changed from spheres to ellipses and platelet–shaped particles depending on the ionic size. Radius of the Ln ions affected crystal structure. The particles with larger ions form monoclinic-type structure for LaVO4 and with smaller ions form zircon-type structure for LnVO4 (Ln = Pr-Yb). A nucleation and aggregates formation mechanism of LnVO4 nanomaterials was proposed to illustrate the crystal growth. The morphologies of LnVO4 nanoparticles could be turned by pH value and molar ratio of reactants. Spherical LaVO4 and PrVO4 nanoparticles were obtained at pH 6, whereas elliptical nanoparticles were obtained at pH 3. Eu3+-, Dy3+-, and Sm3+-doped zircon-type YVO4 nanoparticles exhibit strong luminescence typical of doped ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fang, Z.M., Hong, Q., Zhou, Z.H., Dai, S.J., Weng, W.Z., and Wan, H.L.: Oxidative dehydrogenation of propane over a series of low‐temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal. Lett. 61, 39 (1999).CrossRefGoogle Scholar
2.Martínez-Huerta, M.V., Coronado, J.M., Fernández-Garcia, M., Iglesias-Juez, A., Deo, G., Fierro, J.L.G., and Banares, M.A.: Nature of the vanadia-ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J. Catal. 225, 240 (2004).CrossRefGoogle Scholar
3.Terada, Y., Shimamura, K., Kochurikhin, V.V., Barashov, L.V., Ivanov, M.A., and Fukuda, T.: Growth and optical properties of ErVO4 and LuVO4 single crystals. J. Cryst. Growth 167, 369 (1996).CrossRefGoogle Scholar
4.Fields, R.A., Birnbaum, M., and Fincher, C.L.: Highly efficient Nd:YVO4 diode-laser end-pumped laser. Appl. Phys. Lett. 51, 1885 (1987).CrossRefGoogle Scholar
5.Huignard, A., Gacoin, T., and Boilot, J.P.: Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chem. Mater. 12, 1090 (2000).CrossRefGoogle Scholar
6.Fan, W.L., Song, X.Y., Bu, Y.X., Sun, S.X., and Zhao, X.: Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B 110, 23247 (2006).CrossRefGoogle ScholarPubMed
7.Yu, C.C., Yu, M., Li, C.X., Zhang, C.M., Yang, P.P., and Lin, J.: Spindle-like lanthanide orthovanadate nanoparticles: Facile synthesis by ultrasonic irradiation, characterization, and luminescent properties. Cryst. Growth Des. 9, 783 (2009).CrossRefGoogle Scholar
8.Jia, C.J., Sun, L.D., You, L.P., Jiang, X.C., Luo, F., Pang, Y.C., and Yan, C.H.: Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B 109, 3284 (2005).CrossRefGoogle ScholarPubMed
9.Mahapatra, S. and Ramanan, A.: Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho). J. Alloy. Comp. 395, 149 (2005).CrossRefGoogle Scholar
10.Fan, W.L., Bu, Y.X., Song, X.Y., Sun, S.X., and Zhao, X.: Selective synthesis and luminescent properties of monazite- and zircon-yype LaVO4:Ln (Ln = Eu, Sm, and Dy) nanocrystals. Cryst. Growth Des. 7, 2361 (2007).CrossRefGoogle Scholar
11.Mahapatra, S., Nayak, S.K., Madras, G., and Row, T.N.G.: Microwave synthesis and photocatalytic activity of nano lanthanide (Ce, Pr, and Nd) orthovanadates. Ind. Eng. Chem. Res. 47, 6509 (2008).CrossRefGoogle Scholar
12.Qian, L.W., Zhu, J., Chen, Z., Gui, Y.C., Gong, Q., Yuan, Y.P., Zai, J.T., and Qian, X.F.: Self-assembled heavy lanthanide orthovanadate architecture with controlled dimensionality and morphology. Chemistry 15, 1233 (2009).CrossRefGoogle ScholarPubMed
13.Liu, J.F. and Li, Y.D.: General synthesis of colloidal rare earth orthovanadate nanocrystals. J. Mater. Chem. 17, 1797 (2007).CrossRefGoogle Scholar
14.Deng, H., Yang, S.H., Xiao, S., Gong, H.M., and Wang, Q.Q.: Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. J. Am. Chem. Soc. 130, 2032 (2008).CrossRefGoogle ScholarPubMed
15.Liu, J.F. and Li, Y.D.: Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform nanocrystals. Adv. Mater. 19, 1118 (2007).CrossRefGoogle Scholar
16.Ge, J.P., Hu, Y.X., Biasini, M., Beyermann, W.P., and Yin, Y.D.: Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46, 4342 (2007).CrossRefGoogle ScholarPubMed
17.Deng, H., Li, X.L., Peng, Q., Wang, X., Chen, J.P., and Li, Y.D.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 44, 2782 (2005).CrossRefGoogle ScholarPubMed
18.Ge, J.P., Hu, Y.X., Biasini, M., Dong, C.L., Guo, J.H., Beyermann, W.P., and Yin, Y.D.: One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chemistry 13, 7153 (2007).CrossRefGoogle ScholarPubMed
19.Sun, Y.G. and Xia, Y.N.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).CrossRefGoogle ScholarPubMed
20.Irn, S.H., Lee, Y.T., Wiley, B., and Xia, Y.N.: Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 44, 2154 (2005).Google Scholar
21.Liang, X., Wang, X., Zhuang, Y., Xu, B., Kuang, S.M., and Li, Y.D.: Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect. J. Am. Chem. Soc. 130, 2736 (2008).CrossRefGoogle ScholarPubMed
22.Liang, X., Xu, B., Kuang, S.M., and Wang, X.: Multi-functionalized inorganic-organic rare earth hybrid microcapsules. Adv. Mater. 20, 3739 (2008).CrossRefGoogle Scholar
23.Libert, S., Gorshkov, V., Goia, D., Matijevi, E., and Privman, V.: Model of controlled synthesis of uniform colloid particles: Cadmium sulphide. Langmuir 19, 10679 (2003).CrossRefGoogle Scholar
24.Privman, V., Goia, D.V., Park, J., and Matijevié, E.: Mechanism of formation of monodispersed colloids by aggregation of nanosize Precursors. J. Colloid Interface Sci. 213, 36 (1999).CrossRefGoogle ScholarPubMed
25.Wang, G.F., Qin, W.P., Zhang, D.S., Wang, L.L., Wei, G.D., Zhu, P.F., and Kim, R.: Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: Effect of alkyl substituents and thermal annealing. J. Phys. Chem. C 112, 17042 (2008).CrossRefGoogle Scholar
26.Wang, F., Xue, X.J., and Liu, X.G.: Multicolor tuning of (Ln, P)-Doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 47, 906 (2008).CrossRefGoogle Scholar
Supplementary material: File

Liang et al, supplementary material

Supplementary figures

Download Liang et al, supplementary material(File)
File 7.2 MB