Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T16:23:58.886Z Has data issue: false hasContentIssue false

Some Physicochemical Studies on Organic Eutectics and Molecular Complex: Urea – p-nitrophenol System

Published online by Cambridge University Press:  31 January 2011

U. S. Rai
Affiliation:
Chemistry Department, Banaras Hindu University, Varanasi-221 005 (U.P.), India
R. N. Rai
Affiliation:
Chemistry Department, Banaras Hindu University, Varanasi-221 005 (U.P.), India
Get access

Abstract

The phase diagram of urea–p-nitrophenol system, in the form of a temperature-composition curve, shows the formation of a 1: 1 molecular complex surrounded by two eutectics containing 0.216 and 0.777 mole fraction of p-nitrophenol. Data on growth velocity (v), obtained by measuring the rate of movement of the interface at different undercoolings (ΔT), suggest that they obey the Hillig–Turnbull equation, i.e., v = uT)n, where u and n are constants depending on the nature of materials involved. From the heat of fusion values, determined by the differential scanning calorimetry (DSC) method, heat of mixing, entropy of fusion, roughness parameter, interfacial energy, radius of the critical nucleus, and the excess thermodynamic functions were calculated. While the x-ray diffraction data show that the eutectics are not mechanical mixtures of the components under investigation, the microstructural investigations give their characteristic features.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Herlach, D. M., Cochrane, R. F., Egry, I., Fecht, H. S., and Greer, A. L., Int. Mater. Rev. 38, 273 (1993).CrossRefGoogle Scholar
2.Kurz, W. and Trivedi, R., Proc. 3rd Int. Conf. on Solidification Processing, Sheffield (Inst. Metals, London, 1987), p. 1.Google Scholar
3.Elliott, R., Eutectic Solution Processing (Butterworths, London, 1983).Google Scholar
4.Lee, J. H. and Verhoeven, J. D., J. Cryst. Growth 143, 86 (1994).CrossRefGoogle Scholar
5.Kurz, W. and Fisher, D. J., Fundamentals of Solidification (Trans. Tech. Publication Ltd., Switzerland, 1989).Google Scholar
6.Glazer, J., Int. Mater. Rev. 40, 65 (1995).CrossRefGoogle Scholar
7.Singh, N. B. and Dwevedi, K. D., J. Sci. Ind. Res. 41, 90 (1982).Google Scholar
8.Jackson, K. A. and Hunt, J. D., Trans. Met. Soc. AIME 236, 1129 (1966).Google Scholar
9.Pigon, K. and Krajewska, K., Thermochim. Acta 58, 58 (1982).CrossRefGoogle Scholar
10.Glicksman, M. E., Singh, N. B., and Chopra, M., Manufacturing in Space 11, 207 (1983).Google Scholar
11.Grugel, R. N. and Hellawell, A., Metall. Trans. 15A, 1626 (1984).CrossRefGoogle Scholar
12.Togashi, A. and Matsunaga, Y., Bull. Chem. Soc. Jpn. 69, 1171 (1987).CrossRefGoogle Scholar
13.Trivedi, R. and Kurz, W., Int. Mater. Rev. 39, 49 (1994).CrossRefGoogle Scholar
14.Singh, N. B., Henningsen, T., Hopkins, R. H., Mazelsky, R., Hamacher, R. D., Supertzi, E. P., Hopkins, F.K., Zelmon, D. E., and Singh, O. P., J. Cryst. Growth 128, 976 (1993).CrossRefGoogle Scholar
15.Yasuda, H., Ohnaka, I., Matsunaga, Y., and Shiohara, Y., J. Cryst. Growth 158, 120 (1996).CrossRefGoogle Scholar
16.Smith, J. F., Frazier, D. O., and Kaukler, W. F., Scripta Metall. 18, 677 (1984).CrossRefGoogle Scholar
17.Sangster, J., J. Phys. Chem. Ref. Data 23, 295 (1994).CrossRefGoogle Scholar
18.Rai, U. S. and George, S., Thermochim. Acta 243, 17 (1994).CrossRefGoogle Scholar
19.Rai, U. S. and Mandal, K. D., Mol. Cryst. Liq. Cryst. 182, 387 (1990).CrossRefGoogle Scholar
20.Rai, U. S. and Rai, R. N., J. Cryst. Growth 169, 563 (1996).CrossRefGoogle Scholar
21.Singh, N. B. and Singh, N. B., Krist. Tech. 13, 1175 (1978).CrossRefGoogle Scholar
22.Rai, U. S. and Mandal, K. D., Bull. Chem. Soc. Jpn. 63, 1496 (1990).CrossRefGoogle Scholar
23.Dodd, J. W. and Tonge, K. H., Thermal Method, edited by Currell, B. T. (Wiley, New York, 1987).Google Scholar
24.Rai, U. S. and Rai, R. N., J. Cryst. Growth 191, 234 (1998).CrossRefGoogle Scholar
25.Rai, U. S. and Rai, R. N., Thermochim. Acta 277, 209 (1996).CrossRefGoogle Scholar
26.Rastogi, R. P. and Rastogi, V. K., J. Cryst. Growth 5, 345 (1969).CrossRefGoogle Scholar
27.Rai, U.S. and Rai, R.N., ACH-Models in Chem. 133, 133 (1996).Google Scholar
28.Glasstone, S., Textbook of Physical Chemistry, 2nd ed. (Macmillan Pvt. Ltd., London, 1946), p. 757.Google Scholar
29.Rai, U. S. and Rai, R. N., Mol. Mater. 9, 235 (1998).Google Scholar
30.Hillig, W.B. and Turnbull, D., J. Chem. Phys. 24, 914 (1956).CrossRefGoogle Scholar
31.Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, New York, 1982).Google Scholar
32.Winegard, W.C., Mojka, S., Thall, B. M., and Chalmers, B., Can. J. Chem. 29, 320 (1957).CrossRefGoogle Scholar
33.Raghavan, V., Materials Science and Engineering (Prentice-Hall of India Pvt. Ltd., New Delhi, India, 1995).Google Scholar
34.Chadwick, G. A., Metallography of Phase Transformations (Butterworths and Co. Ltd., London, 1972).Google Scholar
35.Rai, U.S. and George, S., Cryst. Res. Technol. 29, 551 (1994).CrossRefGoogle Scholar
36.Singh, N.B., Acta Ciencia Indica 4, 4 (1978).Google Scholar
37.Rai, U.S., Singh, O.P., Singh, N. P., and Singh, N. B., Thermochim. Acta 71, 373 (1983).CrossRefGoogle Scholar
38.Wisnaik, J. and Tamir, A., Mixing and Excess Thermodynamic Properties (Elsevier, Amsterdam, 1978).Google Scholar
39.Foster, R., Organic Charge-Transfer Complexes (Academic Press, New York, 1969).Google Scholar
40.Bassi, P.S., Sharma, N.K., and Goswami, K. N., Indian, J.Chem. Soc. LIX, 968 (1982).Google Scholar
41.Podolinsky, V.V., Taran, Y.N., and Drykin, V.G., J. Cryst. Growth 96, 445 (1989).CrossRefGoogle Scholar
42.Hunt, J. D. and Jackson, K. A., Trans. Met. Soc. AIME 236, 843 (1966).Google Scholar