Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T21:25:09.897Z Has data issue: false hasContentIssue false

Sonochemical method for the synthesis of antimony sulfide microcrystallites with controllable morphology

Published online by Cambridge University Press:  31 January 2011

J. H. Zhang
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
Z. Chen
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
Z. L. Wang
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
N. B. Ming
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
Get access

Abstract

Spindlelike, rodlike, starlike, and spherical antimony sulfide (Sb2S3) microcrystallites have successfully been synthesized via a sonochemical method at room temperature. The x-ray diffraction pattern analysis based on the Rietveld method demonstrates that ultrasound can convert the structure of Sb2S3 from amorphous phase to crystalline phase. The crystallinity and morphology of Sb2S3 particles can be modified by using different solvents or solutions. It is found that the spindlelike and starlike particles result from the aggregation of nanoparticles while the rodlike particles arise from epitaxial growth. Due to the quantum confinement effect of charge carriers in small microcrystalline volumes, the characteristic peaks in the optical absorption spectrum of the synthesized 0.001 M Sb2S3 (<100 nm) colloidal solutions are blue-shifted by about 500 nm as compared to the bulk band gaps of Sb2S3.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Roy, B., Chakbraborty, B.R., Bhattacharya, R., and Dutta, A.K., Solid State Commun. 25, 937 (1978).CrossRefGoogle Scholar
Arivuoli, D., Gnanam, F.D., and Ramasamy, P., J. Mater. Sci. Lett. 7, 711 (1988).CrossRefGoogle Scholar
N.Kh. Abrikosov, V.F. Bankina, L.V. Poretakaya, L.E. Shelimova, and E.V. Skudnova, in Semiconducting II–VI and V–VI Compounds, edited by Tybulewicz, A. (Plenum, New York, 1969), p. 186.Google Scholar
Karpus, A.S. and Mikalkevichus, M.F., Litovsk. Fiz. Sb. 2, 151 (1962).Google Scholar
Yu, S.H., Shu, L., Wu, Y.S., Qian, Y.T., Xie, Y., Yang, L., Mater. Res. Bull. 33, 1207 (1998).Google Scholar
Variano, B.F., Hwang, D.M., Sandroff, C.J., Wiltzius, P., Jind, T.W., Ong, N.P., J. Phys. Chem. 91, 6455 (1987).CrossRefGoogle Scholar
Kaito, C., Saito, Y., and Fujita, K., J. Cryst. Growth 94, 967 (1989).CrossRefGoogle Scholar
Suslick, K.S., Choe, S.B., Cichowlas, A.A., and Grinstaff, M.W., Nature 353, 414 (1991).Google Scholar
Yu. Koltypin, G. Katabi, R. Prozorov, and A. Gedanken, J. Non-Cryst. Solids 201, 159 (1996).CrossRefGoogle Scholar
Nagata, Y., Mizukoshi, Y., Okitsu, K., and Maeda, Y., Radiat. Res. 146, 33 (1996).CrossRefGoogle Scholar
Okitsu, K., Mizukoshi, Y., Bandow, H., Maeda, Y., Yamamote, T., and Nagata, T., Ultrasound Sonochem. 3, 249 (1996).CrossRefGoogle Scholar
Hyeon, T., Fand, M., and Suslick, K.S., J. Am. Chem. Soc. 118, 5492 (1996).CrossRefGoogle Scholar
Cao, X., Koltypin, Yu., Katabi, G., Felner, I., and Gedanken, A., J. Mater. Res. 12, 405 (1997).Google Scholar
Dhas, N. Arul and Gedanken, A., J. Phys. Chem. B 101, 9495 (1997).CrossRefGoogle Scholar
Zhu, J.J., Aruna, S.T., Koltypin, Yu., and Gedanken, A., Chem. Mater. 12, 143 (2000).Google Scholar
Kyono, A., Kimata, M., Matsuhisa, M., Miyashita, Y., and Okamoto, K., Phys. Chem. Minerals 29, 254 (2002).CrossRefGoogle Scholar