Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-19T19:26:31.970Z Has data issue: false hasContentIssue false

Spontaneous ferromagnetism at room temperature in oxygen-rich dicalcium cuprate Ca2CuO3+δ

Published online by Cambridge University Press:  31 January 2011

Mahjoub A. Abdelgadir*
Affiliation:
Department of Physics, North Carolina A/T State University, Greensboro, North Carolina 27411
Richard S. Burrows
Affiliation:
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
Darl H. McDaniel
Affiliation:
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
*
(a) Author to whom correspondence should be addressed.
Get access

Abstract

Stoichiometric Ca2CuO3, having square-planar Cu-chains [C. L. Teske and H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 379, 234 (1970); M. Hjorth and J. Hyldtoft, Acta Chem. Scand. 44, 516 (1990)], is expectedly antiferromagnetic due to 1D intrachain superexchange [K. Okuda, S. Noguchi, K. Konishi, H. Deguchi, and K. Takeda, J. Magn. Magn. Mater. 104–107, 817 (1992)]. Nonetheless, we report remarkable spontaneous ferromagnetism at 293 K after sintering, prominently in oxygen. This apparently introduced excess oxygen at vacant quasioctahedral sites, promoting spin-flip and ferromagnetic interchain coupling. Thermogravimetry (TGA) revealed excess oxygen, ≈0.17 O/Cu. X-ray diffraction (XRD) yielded a comparatively smaller unit cell. Ferromagnetism disappeared by oxygen depletion, mimicking reported nonmagnetism of Ca2CuO3−δ [Okuda et al. (1992)]. Elemental analysis showed insignificant magnetic impurity traces. Tc ranged between 680 K and 723 K, depending on freshness and purity. Saturation magnetization varied with processing, optimally 0.30 A · m2/kg at 1.0 T applied field. Coercivity and remanence varied with purity.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Okuda, K., Noguchi, S., Konishi, K., Deguchi, H., and Takeda, K., J. Magn. Magn. Mater. 104–107, 817 (1992).CrossRefGoogle Scholar
2.Abdelgadir, M. A. (unpublished results).Google Scholar
3.Burrows, R. S., McDaniel, D. H., and Abdelgadir, M., J. Magn. Magn. Mater. 125, 269 (1993).CrossRefGoogle Scholar
4.Liang, J., Chen, Z., Wu, F., and Xie, S., Solid State Commun. 75, 247 (1990).CrossRefGoogle Scholar
5.Abdelgadir, M. A., Burrows, R. S., and McDaniel, D. H., Bull. Am. Phys. Soc. 39B, 20032004 (1994).Google Scholar
6.Teske, C. L. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem. 379, 234 (1970).CrossRefGoogle Scholar
7.Hjorth, M. and Hyldtoft, J., Acta Chem. Scand. 44, 516 (1990).CrossRefGoogle Scholar
8.Yang, B. X., Tranquada, M. J., and Shirane, G., Phys. Rev. B 38, 174 (1988).CrossRefGoogle Scholar
9.Vaknin, D., Caignol, E., Davies, P. K., Fischer, J.E., Johnston, D. C., and Goshorn, D. P., Phys. Rev. B 39, 9122 (1989).CrossRefGoogle Scholar
10.Strauven, H., Locquet, J. P., Verbeke, O. B., and Bruynseraede, Y., Solid State Commun. 65, 293 (1988).CrossRefGoogle Scholar
11.Jorgensen, J. D., Dabrowski, B., Pei, S., Richards, D. R., and Hinks, D. G., Phys. Rev. B 40, 2187 (1989).CrossRefGoogle Scholar
12.Yang, B. X., Thurston, T. R., Tranquada, J. M., and Shirane, G., Phys. Rev. B 39, 4343 (1989).CrossRefGoogle Scholar
13.Vaknin, D., Sinha, S. K., Moncton, D. E., Johnston, D. C., Newsam, J.M., Safinya, C. R., and King, H. E. Jr., Phys. Rev. Lett. 58, 2802 (1987).CrossRefGoogle Scholar
14.Thio, T., Thurston, T. R., Preyer, N. W., Picone, P. J., Kastner, M. A., Jennsen, H. P., Gabbe, D. R., Chen, C. Y., Birgeneau, R. J., and Aharony, A., Phys. Rev. B 38, R905 (1988).CrossRefGoogle Scholar
15.Yamada, I., J. Phys. Soc. Jpn. 28, 1585 (1970).CrossRefGoogle Scholar