Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-02T07:23:10.441Z Has data issue: false hasContentIssue false

Stability of Fe-Based Alloys With Structure Type C6Cr23

Published online by Cambridge University Press:  03 March 2011

M. Widom
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
M. Mihalkovic
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; and Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia
Get access

Abstract

Bulk metallic glass forms when liquid metal alloys solidify without crystallization. In the search for iron-based bulk glass-forming alloys of the metal–metalloid type (Fe–B- and Fe–C-based), crystals based on the structural prototype C6Cr23 often preempt the amorphous phase. Destabilizing this competing crystal structure could enhance glass formability. We carried out first-principles total energy calculations of enthalpy of formation to identify third elements that can effectively destabilize C6Cr23. Yttrium appears optimal among transition metals, and rare earths also are suitable. Atomic size is the dominant factor.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ponnambalam, V., Poon, S.J., Shiflet, G.J., Keppens, V.M., Taylor, R. and Petculescu, G.: Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Appl. Phys. Lett. 83, 1131 (2003).CrossRefGoogle Scholar
2Ponnambalam, V., Poon, S.J. and Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).CrossRefGoogle Scholar
3Lu, Z.P., Liu, C.T., Thompson, J.R. and Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).CrossRefGoogle ScholarPubMed
4Mihalkovic, M. and Widom, M.: Cohesive energies of Fe-based glass-forming alloys. Phys. Rev. B 70, 144107 (2004).CrossRefGoogle Scholar
5Egami, T. and Waseda, Y.: Atomic size effect of the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
6Miracle, D.B. and Senkov, O.N.: Topological criterion for metallic glass formation. Mater. Sci. Eng. A 347, 50 (2003).CrossRefGoogle Scholar
7Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
8Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, RC558 (1993).CrossRefGoogle ScholarPubMed
9Blochl, P.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle ScholarPubMed
10Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
11Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle ScholarPubMed
12Vosko, S.H., Wilk, L. and Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
13Moroni, E., Kresse, G., Hafner, J. and Furthmuller, J.: Ultrasoft pseudopotentials applied to magnetic Fe, Co and Ni: From atoms to solids. Phys. Rev. B 56, 15629 (1997).CrossRefGoogle Scholar
14 Structure and energy data is available on the Internet at http://alloy.phys.cmu.edu.Google Scholar
15Villars, P.: Pearson’s Handbook, Desk Edition (ASM International, Materials Park, OH, 1997).Google Scholar
16Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T.: The Quickhull algorithm for convex hulls, ACM Trans. Math. Software 22, 469 (1996), see web site http://www.qhull.org.CrossRefGoogle Scholar
17Diagrams, Binary Alloy Phase, Massalski, edited by T.B., Okamoto, H., Subramanian, P.R. and Kacprzah, L. (ASM International, Materials Park, OH, 1990).Google Scholar
18 Desk Handbook Phase Diagrams for Binary Alloys, edited by Okamoto, H. (ASM International, Materials Park, OH, 2000).Google Scholar
19Gschneidner, K.A. and Calderwood, F.W.: The C-Y system. Bull. Alloy Phase Diag. 7, 564 (1986).CrossRefGoogle Scholar
20Okamoto, H.: C-Y. J. Phase Equilibria 17, 548 (1996).CrossRefGoogle Scholar
21Villars, P., Prince, A. and Okamoto, H.: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1995).Google Scholar
22Watson, R.E. and Bennett, L.H.: Crystalline and glassy phases of transition-metal-metalloid systems. Phys. Rev. B 43, 11642 (1991).CrossRefGoogle ScholarPubMed
23Wang, W.H., Bian, Z., Wen, P. and Pan, M.X.: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).CrossRefGoogle Scholar