Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T13:13:32.920Z Has data issue: false hasContentIssue false

Structural changes and thermal expansion behavior of ultrafine titanium powders during compaction and heating

Published online by Cambridge University Press:  01 March 2005

B.B. Panigrahi*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302 India
M.M. Godkhindi
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302 India
*
a)Address all correspondence to this author. e-mail: bpani2k@yahoo.com
Get access

Abstract

This work represents an attempt to understand the nature of micron and attrition milled nano-sized titanium powders on two different aspects, i.e., pressure-induced phase change and thermal expansion. Contraction in the volume of unit cell in terms of decrease in interplaner spacing (d) has been observed in both powders and tends to restore upon annealing. At a given pressure, nano titanium shows a smaller decrease in d relative to micron titanium. The stress analysis of the compacts indicates higher value of residual stresses and deformations in micron powder than in nano powder. The dilatometric study reveals, first, the release of internal stresses and entrapped gases causes huge expansion in nanopowder compacts during heating. Secondly, there is no significant difference in the expansion coefficients of sintered micro- and nanocrystalline titanium samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jamieson, J.C.: Crystal structures of titanium, zirconium and hafnium at high pressures. Science 140, 72 (1963).CrossRefGoogle ScholarPubMed
2.Singh, A.K., Mohan, M. and Divakar, C.: The kinetics of pressure-induced α→ω transformation in Ti. J. Appl. Phys. 53, 1221 (1982).CrossRefGoogle Scholar
3.Xia, H., Parthasarathy, G., Luo, H., Vohra, Y.K. and Rouff, A.L.: Crystal structures of group IVA metals at ultrahigh pressures. Phys. Rev. B 42, 6736 (1990).CrossRefGoogle ScholarPubMed
4.Greeff, C.W., Trinkle, D.R. and Albers, R.C.: Shock-induced α-ω transition in titanium. J. Appl. Phys. 90, 2221 (2001).CrossRefGoogle Scholar
5.Barrett, C.S.: Structure of Metals: Crystallographic Methods, Principles and Data, 2nd ed. (McGraw–Hill, New York, 1952), p. 538.Google Scholar
6.Bundy, F.P.: Pressure-temperature phase diagram of iron to 200 kbar, 900°C. J. Appl. Phys. 36, 616 (1965).CrossRefGoogle Scholar
7.Liu, H., Secco, R.A., Imanaka, N. and Adachi, G.: X-ray diffraction study of pressure- induced amorphization in Lu2(WO4)3. Solid State Commun. 121, 177 (2002).CrossRefGoogle Scholar
8.Pascarelli, S., Aquilanti, G., Munsch, P. and Itié, J.P.: High pressure and high temperature x-ray diffraction study of InAs. Nucl. Instrum. Meth. 200, 439 (2003).CrossRefGoogle Scholar
9.Wang, Z., Saxena, S.K., Pischedda, V., Liermann, H.P. and Zha, C.S.: X-ray diffraction and raman spectroscopic study of nanocrystalline CuO under pressures. J. Phys.: Condens. Matter 13, 8317 (2001).Google Scholar
10.Dominguez, O., Phillippot, M. and Bigot, J.: The relationship between consolidation behavior and particle size in Fe nanometric powders. Scripta Mater. 32, 13 (1995).CrossRefGoogle Scholar
11.Zhao, M., Li, X., Wang, Z., Song, L., Xiao, L. and Xu, B.: The effect of pressure on the specific surface area and density of nanocrystalline ceramic powders. Nanostruct. Mater. 1, 379 (1992).CrossRefGoogle Scholar
12.Parida, N., Pani, B.B. and Kumar, B. Ravi: Acoustic emission assisted compaction studies on iron, iron-aluminium and iron-cast iron powders. Scripta Mater. 37, 1659 (1997).CrossRefGoogle Scholar
13.Cullity, B.D.: Elements of X-ray Diffraction (Addison Wesley, Boston, MA 1956).Google Scholar
14.Birringer, R.: Nanocrystalline materials. Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
15.Lu, K.: The thermal instability of nanocrystalline Ni-P materials with different grain sizes. Nanostruct. Mater. 2, 643 (1993).CrossRefGoogle Scholar
16.Sui, M.L. and Lu, K.: Themal expansion behaviour of nanocrystalline Ni-P alloys of different grain sizes. Nanostruct. Mater. 6, 651 (1995).CrossRefGoogle Scholar
17.Zhang, H. and Mitchell, B.S.: Thermal expansion behavior and microstructure in bulk nanocrystalline selenium by thermomechanical analysis. Mater. Sci. Eng. A 270, 237 (1999).CrossRefGoogle Scholar
18.Zhao, Y.H., Sheng, H.W. and Lu, K.: Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 49, 365 (2001).CrossRefGoogle Scholar
19.Qian, L.H., Wang, S.C., Zhao, Y.H. and Lu, K.: Microstrain effect on thermal properties of nanocrystalline Cu. Acta Mater. 50, 3425 (2002).CrossRefGoogle Scholar
20.Eastman, J.A., Fitzsimmons, M.R., Thompson, L.J., Lawson, A.C. and Robinson, R.A.: Diffraction studies of the thermal properties of nanocrystalline Pd and Cr. Nanostruct. Mater. 1, 465 (1992).CrossRefGoogle Scholar
21.Turi, T. and Erb, U.: Thermal expansion and heat capacity of porosity-free nanocrystalline materials. Mater. Sci. Eng. A 204, 34 (1995).CrossRefGoogle Scholar
22. PDF-2 Data Base, PCPDFWIN (2.0), JCPDS (International Centre for Diffraction Data, Newtown Square, PA, 1998).Google Scholar
23.Donachie, M.J.: Titanium: A Technical Guide (ASM International, Materials Park, OH, 2000).CrossRefGoogle Scholar
24.Buch, A.: Pure Metals Properties: A Scientific Technical Handbook (ASM International, Materials Park, OH, and Freund Publishing Home Ltd., London, U.K., 1999), p. 15.Google Scholar