Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T12:02:46.484Z Has data issue: false hasContentIssue false

Structure and Microwave Dielectric Properties of Ca1−xYxTi1−xAlxO3 (CYTA) Ceramics

Published online by Cambridge University Press:  03 March 2011

Antonio Feteira*
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield S1 3JD, United Kingdom
Derek C. Sinclair
Affiliation:
Department of Engineering Materials, The University of Sheffield, Sheffield S1 3JD, United Kingdom
Michael T. Lanagan
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a) Address all correspondence to this author. e-mail: a.feteira@sheffield.ac.uk
Get access

Abstract

The structure and dielectric properties of Ca1−xYxTi1−xAlxO3 (CYTA) ceramics prepared by the mixed-oxide route have been investigated. CYTA forms a complete solid solution with an orthorhombic perovskite structure. Residual Y4Al2O9 and Y3Al5O12 resulting from incomplete reaction are observed for ⩾ 0.9. Scanning electron microscopy shows that CYTA ceramics exhibit uniform microstructures, with an average grain size that decreases from ∼200 μm at x = 0 to ∼10 μm at x = 1.0. Transmission electron microscopy of CYTA (x = 0.3) ceramics reveals the presence of ferroelastic domains, and electron-diffraction patterns are indexed on the Pnma space group, consistent with an a+bb octahedral tilted structure. The relative permittivity, ϵr, decreases continuously from 170 to 12, while the microwave quality factor, Q·fr, increases from 10,000 to 12,000 GHz, for x = 0 and 1, respectively. CYTA (x = 0.30) ceramics exhibit ϵr ∼ 38, Q·fr of ∼14,212 GHz, and a temperature coefficient of resonance frequency, τf, of −14 ppm/°C. Small additions of acceptor (0.3 wt% ZnO) or donor (1 wt% Nb2O5) dopants decrease Q·fr by ∼20–30%, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Reaney, I.M. and Ubic, R.: Talking microwaves: A review of ceramics at the heart of the telecommunications network. Int. Ceram. 1, 48 (2000).Google Scholar
2Cava, R.J.: Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 (2001).CrossRefGoogle Scholar
3Kell, R.C., Greenham, A.C. and Olds, G.C.E.: High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc. 56, 352 (1973).CrossRefGoogle Scholar
4Petzelt, J. and Kamba, S.: Submillimetre and infrared response of microwave materials: Extrapolation to microwave properties. Mater. Chem. Phys. 79, 175 (2003).CrossRefGoogle Scholar
5Seabra, M.P., Avdeev, M., Ferreira, V.M., Pullar, R.C. and Alford, N.M.: Structure and microwave dielectric properties of La(Mg0.5Ti0.5)O3–CaTiO3 system. J. Eur. Ceram. Soc. 23, 2403 (2003).CrossRefGoogle Scholar
6Ichinose, N., Mizutani, T., Hiraki, H. and Ookuma, H.: Microwave dielectric materials in the system (Sr1−xCax){Li1/4Nb3/4)1−yTiy}O3. Ceramurgia Inter. 3, 100 (1977).CrossRefGoogle Scholar
7Hirahara, S., Fujikawa, N., Enami, S. and Nishi, T. Dielectric ceramic composition and dielectric resonator. U.S. Patent No. 5,356,844 (1994).Google Scholar
8Jancar, B., Suvorov, D., Valant, M. and Drazic, G.: Characterization of CaTiO3–NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391 (2003).CrossRefGoogle Scholar
9Jancar, B., Valant, M. and Suvorov, D.: Solid-state reactions occurring during the synthesis of CaTiO3–NdAlO3 perovskite solid solutions. Chem. Mater. 16, 1075 (2004).CrossRefGoogle Scholar
10Kipkoech, E.R., Azough, F., Freer, R., Leach, C., Thompson, S.P. and Tang, C.C.: Structural study of Ca0.7Nd0.3Ti0.7Al0.3O3 dielectric ceramics using synchrotron x-ray diffraction. J. Eur. Ceram. Soc. 23, 2677 (2003).CrossRefGoogle Scholar
11Zheng, H., de Gyorgyfalva, G., Quimby, R., Bagshaw, H., Ubic, R., Reaney, I.M. and Yarwood, J.: Raman spectroscopy of B-site order–disorder in CaTiO3-based microwave ceramics. J. Eur. Ceram. Soc. 23, 2653 (2003).CrossRefGoogle Scholar
12Nenasheva, E.A., Mudroliubova, L.P. and Kartenko, N.F.: Microwave dielectric properties of ceramics based on CaTiO3–LnMO3 system (Ln = La, Nd; M = Al, Ga). J. Eur. Ceram. Soc. 23, 2443 (2003).CrossRefGoogle Scholar
13Levin, I., Vanderah, T.A., Coutts, R. and Bell, S.M.: Phase equilibria and dielectric properties in perovskite-like (1−x)LaCa0.5Zr0.5O3xATiO3 (A = Ca, Sr) ceramics. J. Mater. Res. 17, 1729 (2002).CrossRefGoogle Scholar
14Levin, I., Chan, J.Y., Maslar, J.E., Vanderah, T.A. and Bell, S.M.: Phase transitions and microwave dielectric properties in the perovskite-like Ca(Al0.5Nb0.5)O3–CaTiO3 system. J. Appl. Phys. 90, 904 (2001).CrossRefGoogle Scholar
15Hakki, B.W. and Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwave Theory Tech. 8, 402 (1960).CrossRefGoogle Scholar
16Courtney, W.E.: Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microwave Theory Tech. 18, 476 (1970).CrossRefGoogle Scholar
17Glazer, A.M.: Simple ways of determining perovskite structures. Acta Crystallogr. Sect. A 31, 756 (1975).CrossRefGoogle Scholar
18Levin, I., Bendersky, L.A., Cline, J.P., Roth, R.S. and Vanderah, T.A.: Octahedral tilting and cation ordering in perovskite-like Ca4Nb2O9 Ca(Ca1/3Nb2/3)O3 polymorphs. J. Solid State Chem. 150, 43 (2000).CrossRefGoogle Scholar
19Cho, S.Y., Kim, I.T. and Hong, K.S.: Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res. 14, 114 (1999).CrossRefGoogle Scholar
20Woodward, D.I. and Reaney, I.M.: Electron diffraction of tilted perovskites. Acta Crystallogr. Sect. B 61, 387 (2005).CrossRefGoogle ScholarPubMed
21Aupi, X., Breeze, J., Ljepojevic, N., Dunne, L.J., Malde, N., Axelsson, A.K. and Alford, N.M.: Microwave dielectric loss in oxides: Theory and experiment. J. Appl. Phys. 95, 2639 (2004).CrossRefGoogle Scholar
22Wang, Y.B. and Liebermann, R.C.: Electron microscopy study of domain structure due to phase transitions in natural perovskite. Phys. Chem. Miner. 20, 147 (1993).CrossRefGoogle Scholar
23Orlovskaya, N., Browning, N. and Nichols, A.: Ferroelasticity in mixed conducting LaCoO3-based perovskites: A ferroelastic phase transition. Acta Mater. 51, 5063 (2003).CrossRefGoogle Scholar
24Kim, C.H., Jang, J.W., Cho, S.Y., Kim, I.T. and Hong, K.S.: Ferroelastic twins in LaAlO3 polycrystals. Phys. B 262, 438 (1999).CrossRefGoogle Scholar
25Reaney, I.M., Colla, E.L. and Setter, N.: Dielectric and structural characteristics of Ba-based and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys: Part 1-Regul. Pap. Short Notes Rev. Pap. 33, 3984 (1994).CrossRefGoogle Scholar
26Kennedy, B.J., Howard, C.J. and Chakoumakos, B.C.: Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study. J. Phys: Condens. Matter 11, 1479 (1999).Google Scholar
27Reaney, I.M., Wise, P., Ubic, R., Breeze, J., Alford, N.M., Iddles, D., Cannell, D. and Price, T.: On the temperature coefficient of resonant frequency in microwave dielectrics. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 81, 501 (2001).Google Scholar
28Pashkin, A., Kamba, S., Berta, M., Petzelt, J., de Györgyfalva, G.D.C. Csete, Zheng, H., Bagshaw, H. and Reaney, I.M.: High-frequency dielectric properties of CaTiO3-based microwave ceramics. J. Phys. D 38, 741 (2005).CrossRefGoogle Scholar
29Wersing, W.: Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1, 715 (1996).CrossRefGoogle Scholar
30Ferreira, V.M. and Baptista, J.L.: Role of niobium in magnesium titanate microwave dielectric ceramics. J. Am. Ceram. Soc. 79, 1697 (1996).CrossRefGoogle Scholar
31Arlt, G., Bottger, U. and Witte, S.: Dielectric dispersion of ferroelectrics ceramics and single crystals by sound generation in piezoelectric domains. J. Am. Ceram. Soc. 78, 1097 (1995).CrossRefGoogle Scholar
32Krupka, J., Derzakowski, K., Tobar, M., Hartnett, J. and Geyer, R.G.: Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 10, 387 (1999).CrossRefGoogle Scholar
33Feteira, A., Elsebrock, R., Dias, A., Moreira, R.L., Sinclair, D.C. and Lanagan, M.T.: Synthesis and characterisation of La0.4Ba0.6Ti0.6Re0.4O3 (where Re = Y, Yb) ceramics. J. Eur. Ceram. Soc. (in print).Google Scholar