Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T13:35:42.190Z Has data issue: false hasContentIssue false

Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology

Published online by Cambridge University Press:  20 March 2012

Jesús López-Paz
Affiliation:
Department of Industrial Engineering, University of A Coruña, Higher Polytechnic School, Campus de Esteiro, Ferrol 15403, Spain
Carlos Gracia-Fernández
Affiliation:
Thermal Analysis, Rheology and Microcalorimetry Applications, TA Instruments—Waters Cromatografía, Alcobendas 20108, Madrid, Spain
Silvia Gómez-Barreiro
Affiliation:
Departament of Applied Physics, CESUGA, University College of Dublin, A Coruña 15190, Spain
Jorge López-Beceiro
Affiliation:
University of A Coruña, Higher Polytechnic School, Campus de Esteiro, Ferrol 15403, Spain
Javier Nebreda
Affiliation:
Corvisa, Productos Asfálticos y Aplicaciones, Madrid 28021, Spain
Ramón Artiaga*
Affiliation:
University of A Coruña, Higher Polytechnic School, Campus de Esteiro, Ferrol 15403, Spain
*
a)Address all correspondence to this author. e-mail: ramon.artiaga@udc.es
Get access

Abstract

Asphalt bitumens are complex colloidal systems of high viscosity and complex behavior, which are mainly used for making asphalt concrete for road surfaces. Thermal and rheological characterizations are needed to understand their complex behavior, particularly at the processing stage. Prediction of properties at short and long observation times is usually performed through time-temperature superposition (TTS) models, which make use of some calculated shift factors. The influence of crystallization-like transformation processes on the validity of these shift factors is investigated here by temperature-modulated differential scanning calorimetry (TMDSC). Four asphalt emulsions are considered in this work, each one with a specific transformation behavior. The structure-properties relationships are explained on the basis of the transformation profiles and rheological data.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gonzalez, O., Pena, J., Munoz, M., Santamaria, A., Perez-Lepe, A., Martinez-Boza, F., and Gallegos, C.: Rheological techniques as a tool to analyze polymer-bitumen interactions: Bitumen modified with polyethylene and polyethylene-based blends. Energy Fuels 16(5), 1256 (2002).CrossRefGoogle Scholar
2.Gonzalez, O., Munoz, M., Santamaria, A., Garcia-Morales, M., Navarro, F., and Partal, P.: Rheology and stability of bitumen/EVA blends. Eur. Polym. J. 40(10), 2365 (2004).CrossRefGoogle Scholar
3.Lu, X. and Isacsson, U.: Rheological characterization of styrene-butadiene-styrene copolymer-modified bitumens. Constr. Build. Mater. 11(1), 23 (1997).CrossRefGoogle Scholar
4.Kim, H., Lee, S., and Amirkhanian, S.N.: Effects of warm mix asphalt additives on performance properties of polymer-modified asphalt binders. Can. J. Civ. Eng. 37(1), 17 (2010).CrossRefGoogle Scholar
5.Behbahani, H., Ziari, H., Fazaeli, H., and Rahmani, J.: Comparison of performance of asphalt mixtures containing polymer modifiers. J. Test. Eval. 37(5), 431 (2009).CrossRefGoogle Scholar
6.Kim, S., Sholar, G.A., Byron, T., and Kim, J.: Performance of polymer-modified asphalt mixture with reclaimed asphalt pavement. Transp. Res. Rec. 2126, 109 (2009).CrossRefGoogle Scholar
7.Yu, T., Li, C., and Wu, S.: Performance of polymer-modified asphalt bridge expansion joints in low-temperature regions. J. Perform. Constr. Facil 23(4), 227 (2009).CrossRefGoogle Scholar
8.Fang, C., Li, T., Zhang, Z., and Jing, D.: Modification of asphalt by packaging waste-polyethylene. Polymer Composites 29(5), 500 (2008).CrossRefGoogle Scholar
9.Tasdemir, Y. and Agar, E.: Investigation of the low-temperature performances of polymer and fiber modified asphalt mixtures RID A-6382-2009. Indian J. Eng. Mater. Sci. 14(2), 151 (2007).Google Scholar
10.Tayfur, S., Ozen, H., and Aksoy, A.: Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr. Build. Mater. 21(2), 328 (2007).CrossRefGoogle Scholar
11.Von Quintus, H.L., Mallela, J., and Buncher, M.: Quantification of effect of polymer-modified asphalt on flexible pavement performance. Transp. Res. Rec. 2001, 141 (2007).CrossRefGoogle Scholar
12.Stuart, K., Mogawer, W., and Youtcheff, J.: Performance of modified asphalt binders with identical high-temperature performance grades but varied polymer chemistries. Bituminous Binders 1875, 33 (2004).Google Scholar
13.Airey, G.: Styrene butadiene styrene polymer modification of road bitumens. J. Mater. Sci. 39(3), 951 (2004).CrossRefGoogle Scholar
14.Sengoz, B. and Isikyakar, G.: Analysis of styrene-butadiene-styrene polymer-modified bitumen using fluorescent microscopy and conventional test methods. J. Hazard. Mater. 150(2), 424 (2008).CrossRefGoogle ScholarPubMed
15.Ait-Kadi, A., Brahimi, B., and Bousmina, M.: Polymer blends for enhanced asphalt binders. Polym. Eng. Sci. 36(12), 1724 (1996).CrossRefGoogle Scholar
16.Isacsson, U. and Lu, X.: Characterization of bitumens modified with SEBS, EVA and EBA polymers. J. Mater. Sci. 34(15), 3737 (1999).CrossRefGoogle Scholar
17.Oliver, J.W.H.: Changes in the chemical composition of Australian bitumens. Road Mater. Pavement Des. 10(3), 569 (2009).CrossRefGoogle Scholar
18.Speight, J.G.: The Chemistry and Technology of Petroleum, 4th ed. (CRC Press/Taylor & Francis, Boca Raton, 2007).Google Scholar
19.Kolbanov, A. and Rudenski, A.: Influence of solid paraffins on structural and rheological properties of bitumens. Colloid J. 30(4), 390 (1968).Google Scholar
20.Planche, J., Martin, D., Rey, C., Champion, L., and Gerard, J.: Evaluation of the Physical Hardening of Bitumens in the Cold: Another Method for Measuring their Paraffin Content (A A Balkema, BR Rotterdam, Netherlands, 1997).Google Scholar
21.Lesueur, D., Gerard, J., Claudy, P., Letoffe, J., Planche, J., and Martin, D.: A structure-related model to describe asphalt linear viscoelasticity. J. Rheol. 40(5), 813 (1996).CrossRefGoogle Scholar
22.Reading, M., Elliott, D., and Hill, V.: A new approach to the calorimetric investigation of physical and chemical-transitions. J. Therm. Anal. 40(3), 949 (1993).CrossRefGoogle Scholar
23.Wunderlich, B., Jin, Y., and Boller, A.: Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim. Acta 238, 277 (1994).CrossRefGoogle Scholar
24.Garcia-Morales, M., Partal, P., Navarro, F., and Gallegos, C.: Effect of waste polymer addition on the rheology of modified bitumen. Fuel 85(7–8), 936 (2006).CrossRefGoogle Scholar
25.Claudy, P., Letoffe, J., King, G.N., and Planche, J.: Characterization of road bitumen by differential scanning calorimetry (DSC). Thermo optical analysis (TOA). Correlation between physical properties and DSC results. Correlation entre proprietes physiques et resultats ACD. Bulletin de Liaison des Laboratoires des Ponts et Chaussees (177), 45 (1992).Google Scholar
26.Claudy, P., Letoffe, J.M., King, G.N., and Plancke, J.P.: Characterization asphalts cements by thermomicroscopy differential scanning calorimetry: Correlation classic physical properties. Fuel Sci. Technol. Int. 10(4–6), 735 (1992).CrossRefGoogle Scholar
27.Lesueur, D.: The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 145(1–2), 42 (2009).CrossRefGoogle ScholarPubMed
28.Leaderman, H.: Elastic and Creep Properties of Filamentous Materials (Textile Foundation, Washington District of Columbia, 1943).Google Scholar
29.Ferry, J.D.: Viscoelastic Properties of Polymers (Wiley, New York, NY, 1980).Google Scholar
30.Alwis, K.G.N.C. and Burgoyne, C.J.: Time-temperature superposition determines stress-rupture aramid fibers. Appl. Compos. Mater. 13(4), 249 (2006).CrossRefGoogle Scholar
31.Arridge, R.G.: Mechanics of Polymers (Clarendon Press, Oxford, 1975).Google Scholar
32.Chevali, V.S., Dean, D.R., and Janowski, G.M.: Flexural creep behavior of discontinuous thermoplastic composites: Nonlinear viscoelastic modeling and time–temperature–stress superposition. Composites Part A 40(6–7), 870 (2009).CrossRefGoogle Scholar
33.Menczel, J.D. and Prime, R.B.: Thermal Analysis of Polymers: Fundamentals and Applications (John Wiley, Hoboken, NJ, 2009).CrossRefGoogle Scholar
34.Gurp, V.M. and Palmen, J.: Time-temperature superposition of polymer blends. Rheology Bulletin 67(1), 5 (1998).Google Scholar