Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T23:31:32.974Z Has data issue: false hasContentIssue false

Superconducting fibers from organometallic precursors. Part II: Chemistry and low temperature processing1

Published online by Cambridge University Press:  31 January 2011

Richard M. Laine*
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Kay A. Youngdahl
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Richard A. Kennish
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Martin L. Hoppe
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Zhi-Fan Zhang
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Jean Ray
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
*
a)Address correspondence to this author at the Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109–2136.
Get access

Abstract

Working principles are developed as guidelines for the selection and/or design of organometallic polymers for processing fiber precursors to metal oxide fibers. These principles form the basis for the selection of metal carboxylate preceramics as an optimal approach to processing yttrium barium cuprate (123) ceramic superconducting fibers. A variety of candidate yttrium, barium, calcium, strontium, bismuth, and copper metal carboxylates were synthesized. Solubility and empirical rheology tests were conducted to screen these compounds to choose spinnable precursor systems. Simple extrusion studies confirmed that THF solutions of mixtures of yttrium, barium, and copper isobutyrates with some quantity of barium 2-ethyl-hexanoates can be used to successfully form 60–70 μm diameter 123 precursor fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

la First paper in this series: Hoppe, M. L., Youngdahl, K. A., Kennish, R. A., and Laine, R. M., 4th Int. Conf. on infrastructure Processing of Glasses, Ceramics, Composites and Polymers, Symp. Proc. edited by Uhlmann, D. and Ulrich, D. (John Wiley, 1991), in press.Google Scholar
b See also Carty, W. M., Stangle, G. C., Laine, R. M., and Youngdahl, K. A., SAMPE Quart., Oct. (1988), p. 3.Google Scholar
2 For recent reviews see Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci. 14, 297 (1984); R. R. Rice, Am. Ceram. Soc. Bull. 62, 889 (1983); R. R. Wills, R. A. Mark, and S. A. Mukherjee, Am. Ceram. Soc. Bull. 62, 904 (1983).CrossRefGoogle Scholar
3aYajima, S., Shishido, T., and Kayano, H., Nature (London) 0264, 237 (1976).CrossRefGoogle Scholar
bYajima, S., Hasegawa, Y., and Hayashi, J., J. Mater. Sci. 13, 2569 (1978).Google Scholar
cHasegawa, Y., Imura, M., and Yajima, S., J. Mater. Sci. 15, 720 (1980).CrossRefGoogle Scholar
dHasegawa, Y. and Okamura, K., J. Mater. Sci. 21, 321 (1986).CrossRefGoogle Scholar
4Lenhart, S. J., Blum, Y. D., and Laine, R. M., Corrosion 45, 503 (1989).CrossRefGoogle Scholar
5Schwartz, K. B. and Blum, Y. D., Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 483.Google Scholar
6aLegrow, G. E., Lim, T. F., Lipowitz, J., and Reaoch, R. S., Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 553.Google Scholar
bPenn, B. G., Ledbetter, F. E., III, Clemons, J. M., and Daniels, J. G., J. Appl. Polym. Sci. 27, 3751 (1982).CrossRefGoogle Scholar
cSeyferth, D. and Wiseman, G. H., Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L. L. Hench and D. R. Ulrich (1984), p. 265.Google Scholar
dChow, A. W., Hamlin, R. D., Blum, Y., and Laine, R. M., J. Polym. Sci. C 26, 103 (1988).Google Scholar
fYoungdahl, K. A., Laine, R. M., Kennish, R. A., Cronin, T. R., and Balavoine, G. A., Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 489.Google Scholar
7aInterrante, L. V., Czekaj, C. L., Hackney, M. L. J., Sigel, G. A., Schields, P. J., and Slack, G. A., ibid., p. 465.Google Scholar
bBaker, R. T., Bolt, J. D., Reddy, G. S., Roe, C., Staley, R. H., Tebbe, F. N., and Vega, A. J., ibid., p. 471.Google Scholar
8aHirschon, A. S. and Laine, R. M., Transformation of Organometallics into Common and Exotic Materials: Design and Activation, NATO ASI Ser. E: Appl. Sci.-No. 141, edited by Laine, R. M. (Martinus Nijhoff Publ., Amsterdam, 1988), p. 21.Google Scholar
bLaine, R. M., U.S. Patent No. 4789534, May 1988.Google Scholar
cLaine, R. M., U.S. Pat. No. 4826666, May 1989.Google Scholar
9Brown, G. M. and Maya, L., J. Am. Ceram. Soc. 71, 7882 (1987).CrossRefGoogle Scholar
10aMantese, J. V., Micheli, A. L., Hamdi, A. H., and Vest, R. W., MRS Bulletin XIV, 48 (1989).CrossRefGoogle Scholar
bVest, R. W. and Xu, J., IEEE Trans. UFFC 35, 711 (1988).CrossRefGoogle Scholar
cXu, J. J., Shaik, A. S., and Vest, R. W., Thin Solid Films 161, 273 (1988).CrossRefGoogle Scholar
dXu, J. J., Shaik, A. S., and Vest, R. W., IEEE Trans. UFFC 36, 307 (1989).CrossRefGoogle Scholar
11Horikiri, S., Tsuji, K., Abe, Y., Fukui, A., and Ichiki, E., U.S. Patent No. 4101615, July 1978.Google Scholar
12 See, for example, Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem. (1988), p. 1; Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by Klein, L. (Noyes Publ., Park Ridge, NJ, 1988); Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988); Science of Ceramic Chemical Processing, edited by L. L. Hench and D. R. Ulrich (Wiley-Interscience, New York, 1986); Int. Conf. on Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L. L. Hench and D. R. Ulrich (Wiley-Interscience, New York, 1984).Google Scholar
13aDislich, H., J. Non-Cryst. Solids 57, 371 (1983).CrossRefGoogle Scholar
bColby, M. W., Osaka, A., and Mackenzie, J. D., J. Non-Cryst. Solids 99, 129 (1988).CrossRefGoogle Scholar
cKlein, L. C., Ann. Rev. Mater. Sci. 15, 227 (1985).CrossRefGoogle Scholar
14 Although organometallic compounds are typically defined as compounds containing a carbon-metal bond, we will use a somewhat broader definition wherein an organometallic material is one in which the properties of the metal are modified (controlled) by bonding interactions to organic ligands. Thus, metal alkoxides [M(OR)x] and carboxylates [(RCOz)xM] are also considered organometallic complexes.Google Scholar
15aLaine, R. M., Youngdahl, K. A., Kennish, R. A., Hoppe, M. L., Zhang, Z-F., and Ray, D. J., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990).Google Scholar
bZhang, Z-F., Youngdahl, K. A., Hoppe, M. L., and Laine, R. M. (unpublished work).Google Scholar
cZhang, Z-F., Youngdahl, K. A., Hoppe, M. L., Laine, R. M., Ray, D. J., and Liu, J. (unpublished work).Google Scholar
16Han, C. D., Rheology in Polymer Processing (Academic Press, New York, 1976).Google Scholar
17Ziabicki, A., Fundamentals of Fiber Formation (J. Wiley, New York, 1976).Google Scholar
18aCalvert, P. and Cima, M., J. Am. Ceram. Soc. 73, 575 (1990).CrossRefGoogle Scholar
bCima, M. J., Lewis, J. A., and Devoe, A. D., J. Am. Ceram. Soc. 72, 1192 (1989).CrossRefGoogle Scholar
cStangle, G. C. and Aksay, I. A., Chem. Eng. Sci. 45 (1990, in press).CrossRefGoogle Scholar
19Ross, D. S., Laine, R. M., Green, T. K., Hirschon, A. S., and Hum, G. P., Fuel 64, 1323 (1985).CrossRefGoogle Scholar
20Dollimore, D. and Heal, G. R., Carbon 5, 65 (1967).CrossRefGoogle Scholar
21aWhite, D. A., Oleff, S. M., Boyer, R. D., Budringer, P. A., and Fox, J. R., Adv. Ceram. Mater. 2, 45 (1987).CrossRefGoogle Scholar
bYoungdahl, K. A., Laine, R. M., Kennish, R. A., Cronin, T. R., and Balavoine, G. G. A., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1986), p. 489.Google Scholar
22Rao, V. M., Sathyanarayana, D. N., and Manohar, H., J.C.S. Dalton (1983), p. 2167.Google Scholar
23aDrew, M. G. B., Edwards, D. A., and Richards, R., J.C.S. Chem. Commun., 124 (1973).CrossRefGoogle Scholar
bDrew, M. G. B., Edwards, D. A., and Richards, R., J.C.S. Dalton, 299 (1977).CrossRefGoogle Scholar
cRodesiler, P. R. and Amma, E. L., J.C.S. Chem. Commun., 599 (1974).CrossRefGoogle Scholar
24Watanabe, T. and Matsui, M., Acta Cryst. B34, 2731 (1978).CrossRefGoogle Scholar
25Groombridge, C. J., Harris, R. K., Packer, K. J., Hursthouse, M. B., and Walker, N. P. C., J. Solid State Chem. 59, 306 (1985).CrossRefGoogle Scholar
26Levine, B. A., Thornton, J. M., and Williams, R. J. P., J.C.S. Chem. Commun., 669 (1974).CrossRefGoogle Scholar
27Trunov, V. A., Kudryashev, V. A., Bulkin, A. P., Ulyanov, V. A., Loshmanov, A. A., Furmanova, N. G., Antson, O., Hiismäki, P., Mutka, H., Poyry, H., and Tiitta, A., Solid State Commun. 59, 95 (1986).CrossRefGoogle Scholar
28Baggio, R. F., de Perazzo, P. K., and Polla, G., Acta Cryst. C41, 194 (1985).Google Scholar
29Baggio, R. F., de Benyacar, M. A. R., de Perazzo, P. K., and Polla, G., J. Solid State Chemistry 56, 298 (1985).CrossRefGoogle Scholar
30Klee, M., Stollman, G. M., Stotz, S., and DeVries, J. W. C., Solid State Commun. 67, 613 (1988).CrossRefGoogle Scholar
31Gupta, A., Jagannathan, R., Cooper, E. I., Giess, E. A., Landman, J. I., and Hussey, B. W., Appl. Phys. Lett. 52, 2077 (1988).CrossRefGoogle Scholar
32Kumagai, T., Yokota, H., Kawaguchi, K., Kondo, W., and Mizuta, S., Chem. Lett. (1987), p. 1645.CrossRefGoogle Scholar
33Chen, Y. L., Mantese, J. V., Hamdi, A. H., and Micheli, A. L., J. Mater. Res. 4, 1065 (1989).CrossRefGoogle Scholar
34Gross, M. E., Hong, M., Liou, S. H., Gallagher, P. K., and Kwo, J., Appl. Phys. Lett. 52, 160 (1988).CrossRefGoogle Scholar
35Nasu, H., Makida, S., Kato, T., Ibara, Y., Imura, T., and Osaka, Y., Chem. Lett., 2403 (1987).CrossRefGoogle Scholar
36Chiang, Y-M., Furcone, S. L., Ikeda, J. A. S., and Rudman, D. A., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 307.Google Scholar
37a Fiber diameters and properties for commercial ceramic fibers are discussed by Shepard, L. M., Am. Ceram. Soc. Bull., pp. 666672 (April 1990).Google Scholar
bYajima, S., Kayano, H., Okamura, K., Omori, M., Jayashi, J., Matsurzwa, T., and Akutsu, K., Am. Ceram. Soc. Bull. 55, 1065 (1976).Google Scholar
38Bloss, F. D., An Introduction to the Methods of Optical Crystallography (Holt, Rinehart and Winston, New York, 1961).Google Scholar
39Micera, G., Piu, P., Erre, L. S., and Cariati, F., Thermochim. Acta 84, 175 (1985).CrossRefGoogle Scholar
40Youngdahl, K. A., Strasik, M., Pillers, J. E., Santiago, D., and Luhman, T. S., paper presented at the Am. Ceram. Soc. Spring Meeting, Dallas, TX, April 1990.Google Scholar
41aJaffe, H. W., Am. Mineral 41, 759 (1956).Google Scholar
bJaffe, H. W., Introduction to Crystal Chemistry (Cambridge University Press, New York, 1988).Google Scholar
42Sauer, N. N., Garcia, E., Salazar, K. V., Ryan, R. R., and Martin, J. A., J. Am. Chem. Soc. 112, 1424 (1990).CrossRefGoogle Scholar